The cystine/glutamate antiporter regulates indoleamine 2,3-dioxygenase protein levels and enzymatic activity in human dendritic cells.

نویسندگان

  • Mildred L Mattox
  • June A D'Angelo
  • Zachary M Grimes
  • Edda Fiebiger
  • Bonny L Dickinson
چکیده

Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in the tryptophan-catabolizing pathway and a key regulator of peripheral immune tolerance. As the suppressive effects of IDO are predominantly mediated by dendritic cells (DCs) and IDO-competent DCs promote long-term immunologic tolerance, a detailed understanding of how IDO expression and activity is regulated in these cells is central to the rational design of therapies to induce robust immune tolerance. We previously reported that the cystine/glutamate antiporter modulates the functional expression of IDO in human monocyte-derived DCs. Specifically, we showed that blocking antiporter uptake of cystine significantly increased both IDO mRNA and IDO enzymatic activity and that this correlated with impaired DC presentation of exogenous antigen to T cells via MHC class II and the cross-presentation pathway. The antiporter regulates intracellular and extracellular redox by transporting cystine into the cell in exchange for glutamate. Intracellular cystine is reduced to cysteine to support biosynthesis of the major cellular antioxidant glutathione and cysteine is exported from the cell where it functions as an extracellular antioxidant. Here we show that antiporter control of IDO expression in DCs is reversible, independent of interferon-γ, regulated by redox, and requires active protein synthesis. These findings highlight a role for antiporter regulation of cellular redox as a critical control point for modulating IDO expression and activity in DCs. Thus, systemic disease and aging, processes that perturb redox homeostasis, may adversely affect immunity by promoting the generation of IDO-competent DCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy

Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN- γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolong...

متن کامل

Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells.

BACKGROUND The immunoregulatory enzyme indoleamine 2,3-dioxygenase, which catalyzes the conversion of tryptophan into kynurenine, is expressed in a significant subset of patients with acute myeloid leukemia, resulting in the inhibition of T-cell proliferation and the induction of regulatory T cells. Acute myeloid leukemia cells can be differentiated into dendritic cells, which have increased im...

متن کامل

The cystine/glutamate antiporter regulates dendritic cell differentiation and antigen presentation.

The major cellular antioxidant glutathione is depleted during HIV infection and in obesity. Although the consequence of glutathione depletion on immune function is starting to emerge, it is currently not known whether glutathione dysregulation influences the differentiation and maturation of dendritic cells (DCs). Moreover, the effect of glutathione depletion on DC effector functions, such as A...

متن کامل

IMMUNOBIOLOGY Interferon- –triggered indoleamine 2,3-dioxygenase competence in human monocyte-derived dendritic cells induces regulatory activity in allogeneic T cells

The role of the tryptophan-metabolizing enzyme indoleamine 2,3-dioxygenase (IDO) in down-regulating human alloresponses has recently been controversially debated. We here demonstrate that human monocyte-derived dendritic cells (mDCs) can be endowed with sustained IDO competence in vitro by 48-hour activation with lipopolysaccharide (LPS) and interferon-gamma (IFN). IFNalso amplified proinflamma...

متن کامل

Interferon- –triggered indoleamine 2,3-dioxygenase competence in human monocyte-derived dendritic cells induces regulatory activity in allogeneic T cells

The role of the tryptophan-metabolizing enzyme indoleamine 2,3-dioxygenase (IDO) in down-regulating human alloresponses has recently been controversially debated. We here demonstrate that human monocyte-derived dendritic cells (mDCs) can be endowed with sustained IDO competence in vitro by 48-hour activation with lipopolysaccharide (LPS) and interferon-gamma (IFN). IFNalso amplified proinflamma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of clinical and experimental immunology

دوره 1 2  شماره 

صفحات  -

تاریخ انتشار 2012