Monte Carlo Simulations in Medical Imaging
نویسنده
چکیده
Monte Carlo techniques have become popular in different areas of medical physics over the last 50 years. Factors which have contributed to the wider use include the improved description of radiation transport as well as the optimization of the computing systems. The main advantage of Monte Carlo methodology deals with the simulation of stochastic processes involving random behavior and the quantification of physical parameters that are difficult or even impossible to calculate by experimental measurements. Due to the above characteristics, many papers have been published based on Monte Carlo methods, most of them emphasizing the electron–photon interactions with matter. Monte Carlo modeling has been carried out by various simulation programs (e.g. EGS, PENELOPE, GEANT4 etc) which in turn have been successfully applied in a variety of medical areas (e.g. mammography, nuclear medicine, radiotherapy etc).
منابع مشابه
Planar and SPECT Monte Carlo acceleration using a variance reduction technique in I131 imaging
Background: Various variance reduction techniques such as forced detection (FD) have been implemented in Monte Carlo (MC) simulation of nuclear medicine in an effort to decrease the simulation time while keeping accuracy. However most of these techniques still result in very long MC simulation times for being implemented into routine use. Materials and Methods: Convolution-based force...
متن کاملBremsstrahlung imaging from the liver using the Monte Carlo simulation
Introduction: Most beta and gamma radiation radioisotopes used for treatment are not suitable for imaging. The bremsstrahlung images on a conventional gamma camera helped to localize the radionuclide within and outside of the lesion. Secondary scattering of gamma rays of higher energy and bremsstrahlung causes contamination in the energy window and reducing the contrast and resolution of the im...
متن کاملGyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملTH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging.
Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Tradit...
متن کاملMonte Carlo Study of Several Concrete Shielding Materials Containing Galena and Borated Minerals
Introduction: The heavyweight concretes have been widely used for constructing medical or industrial radiation facilities with photon sources. Materials and Methods: In this study, heavy concretes containing galena (PbS) and several borated minerals are proposed as suitable materials against photons. The shielding properties of 21 galena concretes containing seven borated minerals with three m...
متن کاملAn assessment of the Photon Contamination due to Bremsstrahlung Radiation in the Electron Beams of a NEPTUN 10PC Linac using a Monte Carlo Method
Introduction: In clinical electron beams, most of bremsstrahlung radiation is produced by various linac head structures. This bremsstrahlung radiation dose is influenced by the geometry and construction of every component of the linac treatment head structures. Thus, it can be expected that the amount of the contaminated photon dose due to bremsstrahlung radiation varies among different linacs,...
متن کامل