STAT3 inhibition suppresses proliferation of retinoblastoma through down-regulation of positive feedback loop of STAT3/miR-17-92 clusters
نویسندگان
چکیده
Retinoblastoma, the most common intraocular malignant tumor in children, is characterized by the loss of both functional alleles of RB1 gene, which however alone cannot maintain malignant characteristics of retinoblastoma cells. Nevertheless, the investigation of other molecular aberrations such as matrix metalloproteinases (MMPs) and miRNAs is still lacking. In this study, we demonstrate that STAT3 is activated in retinoblastoma cells, Ki67-positive areas of in vivo orthotopic tumors in BALB/c nude mice, and human retinoblastoma tissues of the advanced stage. Furthermore, target genes of STAT3 including BCL2, BCL2L1, BIRC5, and MMP9 are up-regulated in retinoblastoma cells compared to other retinal constituent cells. Interestingly, STAT3 inhibition by targeted siRNA suppresses the proliferation of retinoblastoma cells and the formation of in vivo orthotopic tumors. In line with these results, STAT3 siRNA effectively induces down-regulation of target genes of STAT3. In addition, miRNA microarray analysis and further real-time PCR experiments with STAT3 siRNA treatment show that STAT3 activation is related to the up-regulation of miR-17-92 clusters in retinoblastoma cells via positive feedback loop between them. In conclusion, we suggest that STAT3 inhibition could be a potential therapeutic approach in retinoblastoma through the suppression of tumor proliferation.
منابع مشابه
Inhibition of janus kinase 2 by compound AG490 suppresses the proliferation of MDA-MB-231 cells via up-regulating SARI (suppressor of AP-1, regulated by IFN)
Objective(s): The Janus kinase-signal transducers and activators of transcription signaling pathway (JAK/STAT pathway) play an important role in proliferation of breast cancer cells. Previous data showed that inhibition of STAT3 suppresses the growth of breast cancer cells, but the associated mechanisms are not well understood. This study aims to investigate the effect and associated mechanisms...
متن کاملMiR-124 Suppresses Growth of Human Colorectal Cancer by Inhibiting STAT3
Emerging evidence indicate that microRNAs (miRNAs) may play important roles in cancer. Aberrant expression of miRNAs has been frequently identified in different human malignancies, including colorectal cancer (CRC). However, the mechanism by which deregulated miRNAs impact the development of CRC remains largely elusive. In this study, we show that miR-124 is significantly down-regulated in CRC ...
متن کاملMicroRNA-148a suppresses proliferation and invasion potential of non-small cell lung carcinomas via regulation of STAT3
Lung cancer has the highest morbidity and mortality in the world, and non-small cell lung carcinomas (NSCLC) account for 80% of cases of lung cancer. The mechanism of NSCLC is still largely unknown, and finding novel targets is of great importance for the treatment of NSCLC. The current study was designed to evaluate the role of miR-148a in NSCLC cell proliferation and invasion and to investiga...
متن کاملInterleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway.
Dysregulated expression of bone morphogenetic protein receptor type II (BMPR2) is a pathogenetic hallmark of pulmonary hypertension. Downregulation of BMPR2 protein but not mRNA has been observed in multiple animal models mimicking the disease, indicating a posttranscriptional mechanism of regulation. Because microRNAs (miRNAs) regulate gene expression mainly through inhibition of target gene t...
متن کاملMicroRNA-18a enhances the interleukin-6-mediated production of the acute-phase proteins fibrinogen and haptoglobin in human hepatocytes.
The acute-phase response is an inflammatory process triggered mainly by the cytokine IL-6. Signaling of IL-6 is transduced by activation of STAT3 (signal transducer and activator of transcription 3), which rapidly induces the production of acute-phase proteins such as haptoglobin and fibrinogen. Another target of the IL-6/STAT3 signal transduction pathway is the microRNA cluster miR-17/92. Here...
متن کامل