ER-associated protein degradation is a common mechanism underpinning numerous monogenic diseases including Robinow syndrome.
نویسندگان
چکیده
Correct folding of nascent polypeptide chains within the ER is critical for function, assembly into multi-subunit complexes and trafficking through the exocytic pathway for secretory and cell surface proteins. This process is rather inefficient, and a substantial proportion of nascent polypeptides is rejected by an ER quality control system and targeted for degradation. In some cases, only a minor fraction of nascent chains is correctly folded, and the smallest alteration to polypeptide primary structure (i.e. point mutation) can result in the complete loss of function with inherent pathological consequences; cystic fibrosis and emphysema result from such mutations. We have taken a bioinformatic approach to parse a large database of known disease susceptibility genes for candidates whose disease-associated alleles are likely prone to misfolding in the ER. Surprisingly, we find that proteins with ER-targeting signals are over represented in this database when compared with all predicted proteins in the human genome (45 versus 30%). We selected a subgroup of proteins that were positive for both an ER-targeting signal and a membrane-anchoring domain and thereby identified several ER-associated degradation diseases candidates. To determine whether our analysis had identified new ER-degradation substrates, we established that ER retention is indeed the mechanism underlying Robinow syndrome (RRS), one of the identified candidates. Specifically, mutant alleles of ROR2 that are associated with RRS are retained within the ER, whereas wild-type and non-pathogenic alleles are exported to the plasma membrane. These data both uncover a major pathogenic factor for RRS and indicate that misfolding of secretory proteins is likely to significantly contribute to human disease and morbidity.
منابع مشابه
Hypothalamic ER–associated degradation regulates POMC maturation, feeding, and age-associated obesity
Pro-opiomelanocortin (POMC) neurons function as key regulators of metabolism and physiology by releasing prohormone-derived neuropeptides with distinct biological activities. However, our understanding of early events in prohormone maturation in the ER remains incomplete. Highlighting the significance of this gap in knowledge, a single POMC cysteine-to-phenylalanine mutation at position 28 (POM...
متن کاملBiology of endoplasmic reticulum stress in the heart.
The endoplasmic reticulum (ER) is a multifunctional intracellular organelle supporting many processes required by virtually every mammalian cell, including cardiomyocytes. It performs diverse functions, including protein synthesis, translocation across the membrane, integration into the membrane, folding, posttranslational modification including N-linked glycosylation, and synthesis of phosphol...
متن کاملER Stress and Disease: Toward Prevention and Treatment.
Secretory and membrane proteins are synthesized in ribosomes, then mature in the endoplasmic reticulum (ER), but if ER function is impaired, immature defective proteins accumulate in the ER. This situation is called ER stress: in response, a defensive mechanism called the unfolded protein response (UPR) is activated in cells to reduce the defective proteins. During the UPR, the ER transmembrane...
متن کاملRobinow Syndrome: a Rare Case Report from a Tertiary Care Hospital in Eastern India
Background Robinow syndrome is a rare congenital disorder with phenotypically heterogeneous abnormalities. Two modes of inheritances are known for this syndrome namely autosomal recessive and autosomal dominant. Case Report We describe here an eighteen-month-old child who had mesomelic short stature, abnormal facial features, clinodactyly, micropenis and vertebral changes which were further sup...
متن کاملImerslund-Grasbeck Syndrome: A Case Report
Introduction: Megaloblasc anemia is an uncommon problem in childhood most frequently associated with vitamin deficiency or gastrointesnal disease. The common causes of megaloblasc anemia are vitamin B12 (cobalamin) deficiency and folic acid deficiency. Familial selecve malabsorpon of vitamin B12 associated with proteinuria firstly was described by Imerslund (1960) and Grasbeck et al (1960)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 14 17 شماره
صفحات -
تاریخ انتشار 2005