Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein.
نویسندگان
چکیده
The origin recognition complex (ORC) is an initiator protein for DNA replication, but also effects transcriptional silencing in Saccharomyces cerevisiae and heterochromatin function in Drosophila. It is not known, however, whether any of these functions of ORC is conserved in mammals. We report the identification of a novel protein, HBO1 (histone acetyltransferase binding to ORC), that interacts with human ORC1 protein, the largest subunit of ORC. HBO1 exists as part of a multisubunit complex that possesses histone H3 and H4 acetyltransferase activities. A fraction of the relatively abundant HBO1 protein associates with ORC1 in human cell extracts. HBO1 is a member of the MYST domain family that includes S. cerevisiae Sas2p, a protein involved in control of transcriptional silencing that also has been genetically linked to ORC function. Thus the interaction between ORC and a MYST domain acetyltransferase is widely conserved. We suggest roles for ORC-mediated acetylation of chromatin in control of both DNA replication and gene expression.
منابع مشابه
Estrogen receptor α (ERα) mediates 17β-estradiol (E2)-activated expression of HBO1
BACKGROUND HBO1 (histone acetyltransferase binding to ORC1) is a histone acetyltransferase (HAT) which could exert oncogenic function in breast cancer. However, the biological role and underlying mechanism of HBO1 in breast cancer remains largely unknown. In the current study, we aimed to investigate the role of HBO1 in breast cancer and uncover the underlying molecular mechanism. METHODS Imm...
متن کاملStructural and mechanistic insights into regulation of HBO1 histone acetyltransferase activity by BRPF2
HBO1, a member of the MYST family of histone acetyltransferases (HATs), is required for global acetylation of histone H3K14 and embryonic development. It functions as a catalytic subunit in multisubunit complexes comprising a BRPF1/2/3 or JADE1/2/3 scaffold protein, and two accessory proteins. BRPF2 has been shown to be important for the HAT activity of HBO1 toward H3K14. Here we demonstrated t...
متن کاملHBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin.
HBO1, an H4-specific histone acetylase, is a coactivator of the DNA replication licensing factor Cdt1. HBO1 acetylase activity is required for licensing, because a histone acetylase (HAT)-defective mutant of HBO1 bound at origins is unable to load the MCM complex. H4 acetylation at origins is cell-cycle regulated, with maximal activity at the G1/S transition, and coexpression of HBO1 and Jade-1...
متن کاملRole for Plk1 phosphorylation of Hbo1 in regulation of replication licensing.
In a search for Polo-like kinase 1 (Plk1)-interacting proteins using a yeast two-hybrid system, we have identified histone acetyltransferase binding to the origin recognition complex 1 (Hbo1) as a potential Plk1 target. Here, we show that the interaction between Plk1 and Hbo1 is mitosis-specific and that Plk1 phosphorylates Hbo1 on Ser-57 in vitro and in vivo. During mitosis, Cdk1 phosphorylate...
متن کاملHBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1.
HBO1 histone acetylase is important for DNA replication licensing. In human cells, HBO1 associates with replication origins specifically during the G1 phase of the cell cycle in a manner that depends on the replication licensing factor Cdt1, but is independent of the Cdt1 repressor Geminin. HBO1 directly interacts with Cdt1, and it enhances Cdt1-dependent rereplication. Thus, HBO1 plays a direc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 33 شماره
صفحات -
تاریخ انتشار 1999