Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations

نویسندگان

  • Chao Liu
  • Lei Bi
  • R. Lee Panetta
  • Ping Yang
  • Maxim A. Yurkin
چکیده

The pseudo-spectral time domain (PSTD) and the discrete dipole approximation (DDA) are two popular and robust methods for the numerical simulation of dielectric particle light scattering. The present study compares the numerical performances of the two methods in the computation of the single-scattering properties of homogeneous dielectric spheres and spheroids for which the exact solutions can be obtained from the Lorenz-Mie theory and the T-matrix theory. The accuracy criteria for the extinction efficiency and the phase function are prescribed to be the same for the PSTD and DDA in order that the computational time can be compared in a fair manner. The computational efficiency and applicability of the two methods are each shown to depend on both the size parameter and the refractive index of the scattering particle. For a small refractive index, a critical size parameter, which decreases from 80 to 30 as the refractive index increases from 1.2 to 1.4, exists below which the DDA outperforms the PSTD. For large refractive indices (>1.4), the PSTD is more efficient than the DDA for a wide size parameter range and has a larger region of applicability. Furthermore, the accuracy shown by the two methods in the computation of backscatter, linear polarization, and asymmetry factor is comparable. The comparison was extended to include spheroids with typical refractive indices of ice and dust and similar conclusions were drawn. ©2012 Optical Society of America OCIS codes: (010.1290) Atmospheric optics; (290.0290) Scattering. References and links 1. H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, 1957). 2. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic Press, 2000). 3. G. Mie, “Beitrȁge zur optik trȕber medien, speziell kolloidaler metallȍsungen,” Ann. Phys. 330(3), 377–445 (1908). 4. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: A review,” J. Quant. Spectrosc. Radiat. Transf. 55(5), 535–575 (1996). 5. M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transf. 60(3), 309–324 (1998). 6. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973). 7. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). 8. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 558–589 (2007). 9. Y. You, G. W. Kattawar, P.-W. Zhai, and P. Yang, “Zero-backscatter cloak for aspherical particles using a generalized DDA formalism,” Opt. Express 16(3), 2068–2079 (2008). #168049 $15.00 USD Received 7 May 2012; revised 22 Jun 2012; accepted 1 Jul 2012; published 10 Jul 2012 (C) 2012 OSA 16 July 2012 / Vol. 20, No. 15 / OPTICS EXPRESS 16763 10. P. C. Chaumet and A. Rahmani, “Coupled-dipole method for magnetic and negative-refraction materials,” J. Quant. Spectrosc. Radiat. Transf. 110(1-2), 22–29 (2009). 11. R. Alcaraz de la Osa, P. Albella, J. M. Saiz, F. González, and F. Moreno, “Extended discrete dipole approximation and its application to bianisotropic media,” Opt. Express 18(23), 23865–23871 (2010). 12. K. S. Yee, “Numerical solutin of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966). 13. P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in threedimensional space,” J. Opt. Soc. Am. A 13(10), 2072–2085 (1996). 14. W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38(15), 3141–3151 (1999). 15. W. Sun and Q. Fu, “Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices,” Appl. Opt. 39(30), 5569–5578 (2000). 16. G. Chen, P. Yang, and G. W. Kattawar, “Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles,” J. Opt. Soc. Am. A 25(3), 785–790 (2008). 17. C. Liu, R. Lee Panetta, and P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properites for size parameters up to 200,” J. Quant. Spectrosc. Radiat. Transf. 113(13), 1728–1740 (2012). 18. M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express 15(26), 17902–17911 (2007). 19. Q. H. Liu, “The PSTD algorithm: A time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15(3), 158–165 (1997). 20. M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: Capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2234–2247 (2011). 21. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007). 22. B. T. Draine and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.1,” http://arxiv.org/abs/1002.1505 (2010). 23. M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93(2), 216–231 (2005). 24. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994). 25. Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antenn. Propag. 43(12), 1460–1463 (1995). 26. P. Zhai, C. Li, G. W. Kattawar, and P. Yang, “FDTD far-field scattering amplitudes: Comparison of surface and volume integration methods,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 590–594 (2007). 27. K. V. Gilev, E. Eremina, M. A. Yurkin, and V. P. Maltsev, “Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells,” Opt. Express 18(6), 5681– 5690 (2010). 28. S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: A revised compilation,” J. Geophys. Res. 113(D14), D14220 (2008), doi:10.1029/2007JD009744. 29. O. Muñoz, F. Moreno, D. Guirado, D. D. Dabrowska, H. Volten, and J. W. Hovenier, “The Amsterdam-Granada light scattering database,” J. Quant. Spectrosc. Radiat. Transf. 113(7), 565–574 (2012). 30. B. Piller and O. J. F. Martin, “Increasing the performance of the coupled-dipole approximation: A spectral approach,” IEEE Trans. Antenn. Propag. 46(8), 1126–1137 (1998). 31. M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(3 Pt 2), 036703 (2010). 32. A. Bunse-Gerstner and R. Stover, “On a conjugate gradient-type method for solving complex symmetric linear systems,” Lin. Alg. Appl. 287(1-3), 105–123 (1999). 33. I. Ayranci, R. Vaillon, and N. Selcuk, “Performance of discrete dipole approximation for prediction of amplitude and phase of electromagnetic scattering by particles,” J. Quant. Spectrosc. Radiat. Transf. 103(1), 83–101 (2007).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation of the Induced Charge Distribution on the Surface of a Metallic Nanoparticle Due to an Oscillating Dipole Using Discrete Dipole Approximation method

In this paper, the interaction between an oscillating dipole moment and a Silver nanoparticle has been studied. Our calculations are based on Mie scattering theory and discrete dipole approximation(DDA) method.At first, the resonance frequency due to excitingthe localized surface plasmons has been obtained using Mie scattering theory and then by exciting a dipole moment in theclose proximity of...

متن کامل

Theoretical Analysis of the Optical Properties of Gold Nanoparticles Using DDA Approximation

   This article describes a study, using numerical simulation, of the optical properties of nano particles as a function of their size. Many methods introduced to simulate and calculate the interaction of light and particle, such as Mie analysis, boundary element and finite element methods. The Discrete Dipole Approximation (DDA), wherein a target geometry is modeled as a ...

متن کامل

Investigation of extinction spectra of THTS Mn thin films and comparsion with discrete dipole approximation simulation results

In this work, the extinction spectra of the nano-structure of the Tilt Helical and Stair-like Towers of Mn thin films were obtained using discrete dipole approximation (DDA) simulation for both s-and p-polarization at two incident light angles of 10°, and 60° at different azimuthal angles for the there samples with different tilt. Obtained results are compared with the experimental optical exti...

متن کامل

Sea Surfaces Scattering by Multi-Order Small-Slope Approximation: a Monte-Carlo and Analytical Comparison

L-band electromagnetic scattering from two-dimensional random rough sea surfaces are calculated by first- and second-order Small-Slope Approximation (SSA1, 2) methods. Both analytical and numerical computations are utilized to calculate incoherent normalized radar cross-section (NRCS) in mono- and bi-static cases. For evaluating inverse Fourier transform, inverse fast Fourier transform (IFFT) i...

متن کامل

Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers.

We compare the discrete dipole approximation (DDA) and the finite difference time domain (FDTD) method for simulating light scattering of spheres in a range of size parameters x up to 80 and refractive indices m up to 2. Using parallel implementations of both methods, we require them to reach a certain accuracy goal for scattering quantities and then compare their performance. We show that rela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012