An Arithmetic for Rooted Trees
نویسنده
چکیده
We propose a new arithmetic for non-empty rooted unordered trees simply called trees. After discussing tree representation and enumeration, we define the operations of tree addition, multiplication, and stretch, prove their properties, and show that all trees can be generated from a starting tree of one vertex. We then show how a given tree can be obtained as the sum or product of two trees, thus defining prime trees with respect to addition and multiplication. In both cases we show how primality can be decided in time polynomial in the number of vertices and prove that factorization is unique. We then define negative trees and suggest dealing with tree equations, giving some preliminary examples. Finally we comment on how our arithmetic might be useful, and discuss preceding studies that have some relations with ours. The parts of this work that do not concur to an immediate illustration of our proposal, including formal proofs, are reported in the Appendix. To the best of our knowledge our proposal is completely new and can be largely modified in cooperation with the readers. To the ones of his age the author suggests that “many roads must be walked down before we call it a theory”. 1998 ACM Subject Classification E.1 Data Structures, G.2.0 [Discrete Mathematics] General, G.2.2 [Discrete Mathematics] Graph Theory
منابع مشابه
The second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملBinary Tree Arithmetic with Generalized Constructors
We describe arithmetic computations in terms of operations on some well known free algebras (S1S, S2S and ordered rooted binary trees) while emphasizing the common structure present in all them when seen as isomorphic with the set of natural numbers. Constructors and deconstructors seen through an initial algebra semantics are generalized to recursively defined functions obeying similar laws. I...
متن کاملComputing with Free Algebras and Generalized Constructors
We describe arithmetic computations in terms of operations on some well known free algebras (S1S, S2S and ordered rooted binary trees) while emphasizing the common structure present in all them when seen as isomorphic with the set of natural numbers. Constructors and deconstructors seen through an initial algebra semantics are generalized to recursively defined functions obeying similar laws. I...
متن کاملComputing with Hereditarily Finite Sequences
We use Prolog as a flexible meta-language to provide executable specifications of some fundamental mathematical objects and their transformations. In the process, isomorphisms are unraveled between natural numbers and combinatorial objects (rooted ordered trees representing hereditarily finite sequences and rooted ordered binary trees representing Gödel’s System T types). This paper focuses on ...
متن کامل4-PLACEMENT OF ROOTED TREES
A tree T of order n is called k-placement if there are k edge-disjoint copies of T into K_{n}. In this paper we prove some results about 4-placement of rooted trees.
متن کامل