Boundary Estimates for Bergman Polynomials in Domains with Corners

نویسندگان

  • N. STYLIANOPOULOS
  • NIKOS STYLIANOPOULOS
چکیده

Let G be a bounded simply-connected domain in the complex plane C, whose boundary Γ := ∂G is a Jordan curve, and let {pn}n=0 denote the sequence of Bergman polynomials of G. This is defined as the unique sequence of polynomials {pn(z)}n=0, with positive leading coefficient, that are orthonormal with respect to the area measure on G. The asymptotic behaviour of pn(z) in the exterior of Γ, in cases when Γ is a piecewise analytic Jordan curve have been established recently in [15]. The purpose of this note is to derive, for the same class of curves, estimates for the asymptotics of pn(z) on Γ. Dedication: To Ed Saff, an outstanding mathematician, a great mentor and collaborator, and a dear friend, on the occasion of his 70th birthday.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fine Asymptotics for Bergman Polynomials over Domains with Corners

Let G be a bounded simply-connected domain in the complex plane C, whose boundary Γ := ∂G is a Jordan curve, and let {pn} ∞ n=0 denote the sequence of Bergman polynomials of G. This is defined as the sequence pn(z) = λnz n + · · · , λn > 0, n = 0, 1, 2, . . . , of polynomials that are orthonormal with respect to the inner product

متن کامل

$L^p$ boundedness of the Bergman projection on some generalized Hartogs triangles

‎In this paper we investigate a two classes of domains in $mathbb{C}^n$ generalizing the Hartogs triangle‎. ‎We prove optimal estimates for the mapping properties of the Bergman projection on these domains.

متن کامل

Bergman Polynomials on an Archipelago: Estimates, Zeros and Shape Reconstruction

Growth estimates of complex orthogonal polynomials with respect to the area measure supported by a disjoint union of planar Jordan domains (called, in short, an archipelago) are obtained by a combination of methods of potential theory and rational approximation theory. The study of the asymptotic behavior of the roots of these polynomials reveals a surprisingly rich geometry, which reflects thr...

متن کامل

Derivatives of Faber Polynomials and Markov Inequalities

We study asymptotic behavior of the derivatives of Faber polynomials on a set with corners at the boundary. Our results have applications to the questions of sharpness of Markov inequalities for such sets. In particular, the found asymptotics are related to a general Markov-type inequality of Pommerenke and the associated conjecture of Erdős. We also prove a new bound for Faber polynomials on p...

متن کامل

On the Growth of the Bergman Kernel near an Infinite-type Point

We study diagonal estimates for the Bergman kernels of certain model domains in C near boundary points that are of infinite type. To do so, we need a mild structural condition on the defining functions of interest that facilitates optimal upper and lower bounds. This is a mild condition; unlike earlier studies of this sort, we are able to make estimates for non-convex pseudoconvex domains as we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015