Solvation of a spherical cavity in simple liquids: interpolating between the limits.
نویسنده
چکیده
Dissolution of a solute molecule into a solvent necessitates the creation of a cavity devoid of solvent molecules. The cavity solvation free energy is exactly known at both very small and large length scales, but in between it can only be estimated by various approximations. Guided by simulation results for the solvation of small cavities and density functional theory, we analyze the size dependence of the solvation free energy, contact density of solvent molecules, and the interfacial tension for a spherical cavity in a Lennard-Jones fluid or a system of hard spheres. Unlike cavity formation in the hard-sphere system, a quadratic curvature expansion is insufficient to connect smoothly the exact results in the microscopic and macroscopic limits for the cavity surface tension (or equivalently, the contact solvent density) in Lennard-Jones fluids. Considering the sensitivity of solvation to molecular details at small length scales, we conjecture that, for practical purposes, a heuristic approach may be sufficient to link the thermodynamic limit at large length scales and the exact results of cavity formation at very small length scales.
منابع مشابه
Solvation Force in Hard Ellipsoid Molecular Liquids with Rod-Sphere and Rod- Surface Interactions
In previous work, one of us calculated the Solvation force of hard ellipsoid fluid with hard Gaussian overlap potential using hard needle wall interaction and non-linear equation proposed by Grimson- Rickyazen. In present work, using density functional theory and extended restricted orientation model, the solvation force of hard ellipsoid fluid in presence of more realistic rod- sphere and rod-...
متن کاملTemperature and length scale dependence of solvophobic solvation in a single-site water-like liquid.
The temperature and length scale dependence of solvation properties of spherical hard solvophobic solutes is investigated in the Jagla liquid, a simple liquid that consists of particles interacting via a spherically symmetric potential combining a hard core repulsion and a longer ranged soft core interaction, yet exhibits water-like anomalies. The results are compared with equivalent calculatio...
متن کاملA Study on Retention of a Series of Aromatic Compounds in Mixed Micellar Liquid Chromatography Using Linear Solvation Energy Relationship (LSER)
The effect of SDS (0.03-0.07 M) and Brij-35(0-0.003 M) concentrations and temperature on retention parameters of 30 solutes in micellar reversed- phase liquid chromatography systems were studied using solvation parameter model. The system constants were determined by multiple linear regression analysis from experimental values of the retention factors with known descriptors by computer usin...
متن کاملEFFECTS OF TEMPERATURE AND PERCENTAGE OF ORGANIC MODIFIER ON RETENTION AND SELECTIVITY IN RP-HPLC USING SOLVATION PARAMETER MODEL
Effects of temperature and percentage of organic modifier were studied on retention and selectivity in RP-HPLC using solvation parameter model. The system constants were determined by multiple linear regression analysis from experimental values in the retention factor for a group of different solutes with known descriptors by computer using the program SPSS/PC. The experimental results showed t...
متن کاملFree energy of ion hydration: Interface susceptibility and scaling with the ion size.
Free energy of solvation of a spherical ion in a force-field water is studied by numerical simulations. The focus is on the linear solvation susceptibility connecting the linear response solvation free energy to the squared ion charge. Spherical hard-sphere solutes, hard-sphere ions, and Kihara solutes (Lennard-Jones modified hard-sphere core) are studied here. The scaling of the solvation susc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 113 19 شماره
صفحات -
تاریخ انتشار 2009