Phosphatidylinositol 3-kinase regulates Ca2+ signaling in pancreatic acinar cells through inhibition of sarco(endo)plasmic reticulum Ca2+-ATPase.
نویسندگان
چکیده
Calcium is a key mediator of hormone-induced enzyme secretion in pancreatic acinar cells. At the same time, abnormal Ca(2+) responses are associated with pancreatitis. We have recently shown that inhibition of phosphatidylinositol 3-kinase (PI3-kinase) by LY-294002 and wortmannin, as well as genetic deletion of PI3-kinase-gamma, regulates Ca(2+) responses and the Ca(2+)-sensitive trypsinogen activation in pancreatic acinar cells. The present study sought to determine the mechanisms of PI3-kinase involvement in Ca(2+) responses induced in these cells by CCK and carbachol. The PI3-kinase inhibitors inhibited both Ca(2+) influx and mobilization from intracellular stores induced by stimulation of acini with physiological and pathological concentrations of CCK, as well as with carbachol. PI3-kinase inhibition facilitated the decay of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) oscillations observed in individual acinar cells. The PI3-kinase inhibitors decreased neither CCK-induced inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] production nor Ins(1,4,5)P(3)-induced Ca(2+) mobilization, suggesting that the effect of PI3-kinase inhibition is not through Ins(1,4,5)P(3) or Ins(1,4,5)P(3) receptors. PI3-kinase inhibition did not affect Ca(2+) mobilization induced by thapsigargin, a specific inhibitor of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). Moreover, SERCA blockade with thapsigargin abolished the effects of pharmacological and genetic PI3-kinase inhibition on [Ca(2+)](i) signals, suggesting SERCA as a downstream target of PI3-kinase. Both pharmacological PI3-kinase inhibition and genetic deletion of PI3-kinase-gamma increased the amount of Ca(2+) in intracellular stores during CCK stimulation. Finally, addition of the PI3-kinase product phosphatidylinositol 3,4,5-trisphosphate to permeabilized acini significantly attenuated Ca(2+) reloading into the endoplasmic reticulum. The results indicate that PI3-kinase regulates Ca(2+) signaling in pancreatic acinar cells through its inhibitory effect on SERCA.
منابع مشابه
Phosphatidylinositol 3-kinase facilitates bile acid-induced Ca(2+) responses in pancreatic acinar cells.
Bile acids are known to induce Ca(2+) signals in pancreatic acinar cells. We have recently shown that phosphatidylinositol 3-kinase (PI3K) regulates changes in free cytosolic Ca(2+) concentration ([Ca(2+)](i)) elicited by CCK by inhibiting sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). The present study sought to determine whether PI3K regulates bile acid-induced [Ca(2+)](i) responses. In ...
متن کاملDefective endothelium-dependent relaxation of vascular smooth muscle and endothelial cell Ca2+ signaling in mice lacking sarco(endo)plasmic reticulum Ca2+-ATPase isoform 3.
Sarco(endo)plasmic reticulum Ca2+ ATPase isoform 3 (SERCA3) is one of two Ca2+ pumps serving intracellular Ca2+ signaling pools in non-muscle tissues; however, unlike the ubiquitous SERCA2b, it exhibits a restricted cell-type distribution. Gene targeting was used to generate a mouse with a null mutation in the SERCA3 gene. Homozygous mutant mice were viable, fertile, and did not exhibit an over...
متن کاملPeptidyl‐Prolyl Isomerase 1 Regulates Ca2+ Handling by Modulating Sarco(Endo)Plasmic Reticulum Calcium ATPase and Na2+/Ca2+ Exchanger 1 Protein Levels and Function
BACKGROUND Aberrant Ca2+ handling is a prominent feature of heart failure. Elucidation of the molecular mechanisms responsible for aberrant Ca2+ handling is essential for the development of strategies to blunt pathological changes in calcium dynamics. The peptidyl-prolyl cis-trans isomerase peptidyl-prolyl isomerase 1 (Pin1) is a critical mediator of myocardial hypertrophy development and cardi...
متن کاملSarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes.
Transient elevations of cytosolic Ca2+ are a common mechanism of cellular signaling. In striated muscle, the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) plays an important role in terminating Ca2+ transients by returning cytosolic Ca2+ to intracellular stores. Stored Ca2+ can then be released again for subsequent signaling. We down-regulated SERCA2 gene expression in cultured cardiac myocy...
متن کاملHydrogen peroxide attenuates refilling of intracellular calcium store in mouse pancreatic acinar cells
Intracellular calcium (Ca2+) oscillation is an initial event in digestive enzyme secretion of pancreatic acinar cells. Reactive oxygen species are known to be associated with a variety of oxidative stress-induced cellular disorders including pancreatitis. In this study, we investigated the effect of hydrogen peroxide (H2O2) on intracellular Ca2+ accumulation in mouse pancreatic acinar cells. Pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 287 6 شماره
صفحات -
تاریخ انتشار 2004