Asymptotic Behavior of Statistical Estimators and of Optimal Solutions of Stochastic Optimization Problems

نویسنده

  • Jitka Dupačová
چکیده

We study the asymptotic behavior of the statistical estimators that maximize a not necessarily differentiable criterion function, possibly subject to side constraints (equalities and inequalities). The consistency results generalize those of Wald and Huber. Conditions are also given under which one is still able to obtain asymptotic normality. The analysis brings to the fore the relationship between the problem of finding statistical estimators and that of finding the optimal solutions of stochastic optimization problems with partial information. The last section is devoted to the properties of the saddle points of the associated Lagrangians.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Analysis of Stochastic Programs

In this paper we discuss a general approach to studying asymptotic properties of statistical estimators in stochastic programming. The approach is based on an extended delta method and appears to be particularly suitable for deriving asymptotics of the optimal value of stochastic programs. Asymptotic analysis of the optimal value will be presented in detail. Asymptotic properties of the corresp...

متن کامل

Asymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data

Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...

متن کامل

Non-asymptotic confidence bounds for the optimal value of a stochastic program

We discuss a general approach to building non-asymptotic confidence bounds for stochastic optimization problems. Our principal contribution is the observation that a Sample Average Approximation of a problem supplies upper and lower bounds for the optimal value of the problem which are essentially better than the quality of the corresponding optimal solutions. At the same time, such bounds are ...

متن کامل

Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...

متن کامل

Statistical inference of stochastic optimization problems

We discuss in this paper asymptotic statistical inference of stochastic optimization problems. These are optimization problems where the “true” objective function, and probably some of the constraints, are estimated, typically by averaging a random sample. The classical maximum likelihood estimation can be considered in that framework. Recently statistical analysis of such problems has been mot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1988