The bone morphogenic protein inhibitor, noggin, reduces glycemia and vascular inflammation in db/db mice.
نویسندگان
چکیده
Vascular diseases frequently accompany diabetes mellitus. Based on the current understanding of atherosclerosis as an inflammatory disorder of the vascular wall, it has been speculated that diabetes may accelerate atherosclerosis by inducing a proinflammatory milieu in the vasculature. ANG II and bone morphogenic proteins (BMPs) have been implicated in vascular inflammation. We evaluated the effect of angiotensin receptor blockade by valsartan and BMP inhibition by noggin on markers of vascular inflammation in a mouse model of diabetes. Noggin had no effect on blood pressure but decreased serum glucose levels, whereas valsartan significantly decreased blood pressure, but not serum glucose. Both inhibitors reduced reactive oxygen species production in the aorta. Additionally, noggin and valsartan diminish gene transcription and protein expression of various inflammatory molecules in the vascular wall. These observations indicate that although both inhibitors block superoxide production and have similar effects on inflammatory gene expression, glycemia and blood pressure may represent a secondary target differentially affected by noggin and valsartan. Our data clearly identify the BMP pathway as a potentially potent therapeutic target in diabetic inflammatory vascular disease.
منابع مشابه
Inhibition of bone morphogenic protein 4 restores endothelial function in db/db diabetic mice.
OBJECTIVE Bone morphogenic protein 4 (BMP4) is involved in the development of endothelial dysfunction in hypertension. This study investigated whether the inhibition of BMP4 signaling improves endothelial function in db/db diabetic mice. APPROACH AND RESULTS Male db/db mice were treated with noggin via osmotic pump infusion (1 µg/[h·kg(-1)]) for 2 weeks. Adenovirus BMP4-short hairpin RNA was ...
متن کاملBone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function.
OBJECTIVE Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes melli...
متن کاملHydrogen sulfide improves vessel formation of the ischemic adductor muscle and wound healing in diabetic db/db mice
Objective(s): It has been demonstrated that hydrogen sulfide plays a vital role in physiological and pathological processes such as regulating inflammation, oxidative stress, and vessel relaxation. The aim of the study was to explore the effect of hydrogen sulfide on angiogenesis in the ischemic adductor muscles of type 2 diabetic db/db mice and ischemic diabetic wound...
متن کاملEndothelial nitric oxide synthase enhancer reduces oxidative stress and restores endothelial function in db/db mice.
AIMS Endothelial dysfunction is caused by reduced nitric oxide (NO) bioavailability and/or over-produced reactive oxygen species (ROS). The present study investigated a vascular benefit of AVE3085, an endothelial nitric oxide synthase (eNOS) enhancer, in preserving endothelial function in diabetic mice and the mechanisms involved. METHODS AND RESULTS Male db/db and db/m(+) mice were orally ad...
متن کاملBariatric surgery reduces visceral adipose inflammation and improves endothelial function in type 2 diabetic mice.
OBJECTIVE Bariatric surgery is emerging as an effective method to alleviate a multitude of medical conditions associated with morbid obesity and type 2 diabetes. However, little is known about the effects and mechanisms of bariatric surgery on visceral fat inflammation and endothelial dysfunction in type 2 diabetes. We hypothesize that bariatric surgery ameliorates interferon-γ-mediated adipose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 305 5 شماره
صفحات -
تاریخ انتشار 2013