High-temperature single-molecule kinetic analysis of thermophilic archaeal MCM helicases

نویسندگان

  • Kelly M. Schermerhorn
  • Nathan Tanner
  • Zvi Kelman
  • Andrew F. Gardner
چکیده

The minichromosome maintenance (MCM) complex is the replicative helicase responsible for unwinding DNA during archaeal and eukaryal genome replication. To mimic long helicase events in the cell, a high-temperature single-molecule assay was designed to quantitatively measure long-range DNA unwinding of individual DNA helicases from the archaeons Methanothermobacter thermautotrophicus (Mth) and Thermococcus sp. 9°N (9°N). Mth encodes a single MCM homolog while 9°N encodes three helicases. 9°N MCM3, the proposed replicative helicase, unwinds DNA at a faster rate compared to 9°N MCM2 and to Mth MCM. However, all three MCM proteins have similar processivities. The implications of these observations for DNA replication in archaea and the differences and similarities among helicases from different microorganisms are discussed. Development of the high-temperature single-molecule assay establishes a system to comprehensively study thermophilic replisomes and evolutionary links between archaeal, eukaryal, and bacterial replication systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling of DNA binding and helicase activity is mediated by a conserved loop in the MCM protein

Minichromosome maintenance (MCM) helicases are the presumptive replicative helicases, thought to separate the two strands of chromosomal DNA during replication. In archaea, the catalytic activity resides within the C-terminal region of the MCM protein. In Methanothermobacter thermautotrophicus the N-terminal portion of the protein was shown to be involved in protein multimerization and binding ...

متن کامل

Steric exclusion and wrapping of the excluded DNA strand occurs along discrete external binding paths during MCM helicase unwinding

The minichromosome maintenance (MCM) helicase complex is essential for the initiation and elongation of DNA replication in both the eukaryotic and archaeal domains. The archaeal homohexameric MCM helicase from Sulfolobus solfataricus serves as a model for understanding mechanisms of DNA unwinding. In this report, the displaced 5'-tail is shown to provide stability to the MCM complex on DNA and ...

متن کامل

A bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea.

We showed previously that rad50 and mre11 genes of thermophilic archaea are organized in an operon-like structure with a third gene (nurA) encoding a 5' to 3' exonuclease. Here, we show that the rad50, mre11 and nurA genes from the hyperthermophilic archaeon Sulfolobus acidocaldarius are co-transcribed with a fourth gene encoding a DNA helicase. This enzyme (HerA) is the prototype of a new clas...

متن کامل

Functional conservation of beta-hairpin DNA binding domains in the Mcm protein of Methanobacterium thermoautotrophicum and the Mcm5 protein of Saccharomyces cerevisiae.

Mcm proteins are an important family of evolutionarily conserved helicases required for DNA replication in eukaryotes. The eukaryotic Mcm complex consists of six paralogs that form a heterohexameric ring. Because the intact Mcm2-7 hexamer is inactive in vitro, it has been difficult to determine the precise function of the different subunits. The solved atomic structure of an archaeal minichromo...

متن کامل

A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase.

The minichromosome maintenance (MCM) proteins are essential for DNA replication in eukaryotes. Thus far, all eukaryotes have been shown to contain six highly related MCMs that apparently function together in DNA replication. Sequencing of the entire genome of the thermophilic archaeon Methanobacterium thermoautotrophicum has allowed us to identify only a single MCM-like gene (ORF Mt1770). This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016