Lipocalin 2 is essential for chronic kidney disease progression in mice and humans.
نویسندگان
چکیده
Mechanisms of progression of chronic kidney disease (CKD), a major health care burden, are poorly understood. EGFR stimulates CKD progression, but the molecular networks that mediate its biological effects remain unknown. We recently showed that the severity of renal lesions after nephron reduction varied substantially among mouse strains and required activation of EGFR. Here, we utilized two mouse strains that react differently to nephron reduction--FVB/N mice, which develop severe renal lesions, and B6D2F1 mice, which are resistant to early deterioration--coupled with genome-wide expression to elucidate the molecular nature of CKD progression. Our results showed that lipocalin 2 (Lcn2, also known as neutrophil gelatinase-associated lipocalin [NGAL]), the most highly upregulated gene in the FVB/N strain, was not simply a marker of renal lesions, but an active player in disease progression. In fact, the severity of renal lesions was dramatically reduced in Lcn2-/- mice. We discovered that Lcn2 expression increased upon EGFR activation and that Lcn2 mediated its mitogenic effect during renal deterioration. EGFR inhibition prevented Lcn2 upregulation and lesion development in mice expressing a dominant negative EGFR isoform, and hypoxia-inducible factor 1α (Hif-1α) was crucially required for EGFR-induced Lcn2 overexpression. Consistent with this, cell proliferation was dramatically reduced in Lcn2-/- mice. These data are relevant to human CKD, as we found that LCN2 was increased particularly in patients who rapidly progressed to end-stage renal failure. Together our results uncover what we believe to be a novel function for Lcn2 and a critical pathway leading to progressive renal failure and cystogenesis.
منابع مشابه
Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via Lipocalin 2
In chronic kidney disease (CKD), proteinuria results in severe tubulointerstitial lesions, which ultimately lead to end-stage renal disease. Here we identify 4-phenylbutyric acid (PBA), a chemical chaperone already used in humans, as a novel therapeutic strategy capable to counteract the toxic effect of proteinuria. Mechanistically, we show that albumin induces tubular unfolded protein response...
متن کاملClassification of Chronic Kidney Disease Patients via k-important Neighbors in High Dimensional Metabolomics Dataset
Background: Chronic kidney disease (CKD), characterized by progressive loss of renal function, is becoming a growing problem in the general population. New analytical technologies such as “omics”-based approaches, including metabolomics, provide a useful platform for biomarker discovery and improvement of CKD management. In metabolomics studies, not only prediction accuracy is ...
متن کاملComparative Assessment of Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Cystatin C as Early Biomarkers for Early Detection of Renal Failure in Patients with Hypertension
Background: Hypertension is one the most common causes of chronic kidney disease (CKD). One of the major concerns in hypertensive patients is early detection of renal disorders. In the past, serum creatinine (Scr) concentration was used as a marker of kidney function, but it proffers a late reflection of reduced glomerular filtration rate. Cystatin C and neutrophil gelatinase-associated lipocal...
متن کاملIn search of early events in the development of chronic kidney disease: the emerging role for lipocalin-2/NGAL.
In the October 2010 issue of the Journal of Clinical Investigation, Viau et al. [1] provided primary evidence for lipocalin-2 ([Lcn2; also known as neutrophil gelatinaseassociated lipocalin [(NGAL)], 24p3 protein, α1-microglobulin-related protein, or uterocalin]) as a central effector of progressive renal tissue damage upon acute kidney injury. Their studies are based on two experimental mouse ...
متن کاملNeutrophil Gelatinase‐Associated Lipocalin in Cats with Naturally Occurring Chronic Kidney Disease
BACKGROUND Neutrophil gelatinase-associated lipocalin (NGAL) is a biomarker for the early prediction of renal damage and the progression of chronic kidney disease (CKD) in humans and dogs. HYPOTHESIS Neutrophil gelatinase-associated lipocalin also may play a role in the progression of CKD in cats. ANIMALS Eighty CKD and 18 control cats. METHODS Cats were categorized into different stages ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 120 11 شماره
صفحات -
تاریخ انتشار 2010