Conductive molecularly doped gold films

نویسندگان

  • Hadas Naor
  • Yiftach Divon
  • Lior Iagher
  • Lioz Etgar
  • David Avnir
چکیده

We describe a general synthesis of conductive gold thin films doped with entrapped organic molecules, and demonstrate, for the first time, the immobilization of a redox couple within an electrode in a single step. The resulting film is of dual properties: conductivity arising from the gold, and redox behavior originating from the entrapped molecule. Faster electron-transfer rates are found for the entrapped case, compared to adsorption. The conductivity of the film affects the organic molecule–metal interactions, as seen in resistivity measurements, in Raman spectroscopy of the metal-entrapped molecules and from a remarkable red shift of 30 nm in emission spectroscopy. Doping is found to affect the work function of gold. Thin conductive doped metal films are of relevance to a variety of applications such as electrochemical detectors, electrode materials for electrochemical impedance spectroscopy, micro and nano electronics interconnects for packaging and for printed circuit boards. The ability to fine-tune the work function opens the possibility to design the desired energy level gaps for optoelectronic applications such as light emitting diodes (LEDs), solar cells and transistors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amperometric detection of dopamine in human serum by electrochemical sensor based on gold nanoparticles doped molecularly imprinted polymers.

In this work, a highly sensitive and selective biomimetic electrochemical sensor for the amperometric detection of trace dopamine (DA) in human serums was achieved by gold nanoparticles (AuNPs) doped molecularly imprinted polymers (MIPs). Functionalized AuNPs (F-AuNPs), a novel functional monomer bearing aniline moieties on the surface of the AuNPs, were prepared via a direct synthesis method a...

متن کامل

A simple and flexible route to large-area conductive transparent graphene thin-films

Solution-processed conductive, flexible and transparent graphene thin films continue drawing attention from science and technology due to their potential for many electrical applications. Here, an up-scalable method for the solution processing of graphite to graphene and further to self-assembled large-area conductive transparent thin-films is presented. The method proceeds via the graphite int...

متن کامل

Properties of Highly Transparent Conductive Ga-Doped ZnO Films prepared on Polymer Substrates by Reactive Plasma Deposition with DC Arc Discharge

Highly transparent conductive polycrystalline Ga-doped ZnO (GZO) films with a thickness of about 100nm prepared on cyclo-olefin polymer (COP) or glass substrates at various temperatures below 90°C by ion plating with DC-arc discharge were investigated. A systematic study has been made of the influence of substrate temperature Ts on the structural, electrical, optical and residual stress propert...

متن کامل

Doping-dependent electrical characteristics of SnO2 nanowires.

Tin dioxide (SnO2) represents an importantmetal-oxide group that can be suitable for a range of applications through the incorporation of dopants. For example, the electrical conductivity of intrinsic SnO2 depends strongly on the surface properties, as molecular adsorption/desorption will affect the band modulation and space-charge layer, which makes SnO2 an important conductance-type gas-sensi...

متن کامل

Ultraviolet laser crystallized ZnO:Al films on sapphire with high Hall mobility for simultaneous enhancement of conductivity and transparency

Articles you may be interested in Room temperature deposition of alumina-doped zinc oxide on flexible substrates by direct pulsed laser recrystallization Appl. Optical and electrical properties of transparent conducting B-doped ZnO thin films prepared by various deposition methodsa) Structural, electrical, and optical properties of transparent conductive oxide ZnO:Al films prepared by dc magnet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016