The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California

نویسنده

  • Ulyana Horodyskyj
چکیده

The lower crust of the Mesozoic Sierra Nevada batholith was made up of high MgO, garnet-poor and low MgO, garnet-rich pyroxenites. Both groups are genetically linked and are collectively complementary to the mafic to intermediate Sierran plutons. High MgO pyroxenites represent high pressure cumulates from a mantle-derived hydrous basalt or basaltic andesite, resulting in derivative magmas having unusually low MgO for a given SiO2 as represented by the numerous mafic enclaves found in many Sierran plutons. The low MgO pyroxenites are either (1) shallow pressure cumulates from these derivative magmas or (2) partial melting residues (restites) of these derivative magmas after they were emplaced and solidified at lower crustal levels. In both cases, the complementary melt to the low MgO pyroxenites is driven to higher SiO2 contents, generating diorites and granodiorites. However, this simple twostage scenario for the origin of Sierran granitoids cannot explain the observation that the Mg# of Sierran intermediate magmas remains roughly constant at 0.45– 0.50 with increasing SiO2. Basaltic recharge/mixing with the lower crust is suggested as one means of buffering Mg#s and re-melting the lower crust to generate granitic melts, the latter of which mix with more juvenile magmas to complete the Sierran differentiation series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continental crust formation at arcs, the arclogite ‘‘delamination’’ cycle, and one origin for fertile melting anomalies in the mantle

The total magmatic output in modern arcs, where continental crust is now being formed, is believed to derive from melting of the mantle wedge and is largely basaltic. Globally averaged continental crust, however, has an andesitic bulk composition and is hence too silicic to have been derived directly from the mantle. It is well known that one way this imbalance can be reconciled is if the paren...

متن کامل

Constraints on the bulk composition and root foundering rates of continental arcs: A California arc perspective

[1] Garnet pyroxenites are the most common deep lithospheric xenolith assemblages found in Miocene volcanic rocks that erupted through the central part of the Sierra Nevada batholith. Elemental concentrations and isotope ratios are used to argue that the Sierra Nevada granitoids and the pyroxenite xenoliths are the melts and the residues/cumulates, respectively, resulting from partial melting/f...

متن کامل

Similarities between Archean high MgO eclogites and Phanerozoic arc-eclogite cumulates and the role of arcs in Archean continent formation

Some insights into the origin of cratonic mantle can be gained from “eclogite” (loosely defined here as an assemblage containing garnet and any pyroxene) xenoliths hosted in kimberlites erupted through Archean (~2.5­3.5 Gy) cratons. One subset of Archean eclogite xenoliths, the low MgO Archean xenoliths, is presently believed to represent metamorphosed fragments of ancient altered oceanic crust...

متن کامل

Stability of arc lower crust: Insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs

[1] One process for the formation of continental crust is the accretion of arc terranes at continental margins. A longstanding problem with this model is that although the composition of the continental crust is andesitic, the majority of arc lavas are basaltic. Moreover, those arc lavas that are andesitic tend to be evolved (lower Mg #) compared to the continental crust. Continental crust can ...

متن کامل

Can we identify source lithology of basalt?

The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006