Growth kinetics of an indigenous mixed microbial consortium during methylene chloride degradation in a batch reactor

نویسندگان

  • Rajamanickam Ravi
  • Tyagarajan Swaminathan
چکیده

−Biodegradation of methylene chloride by a mixed microbial culture, isolated from a common sewage treatment plant, was investigated in a batch system. Batch experiments were performed at room temperature (27 C) and pH value of 7. The methylene chloride concentration in growth media varied from 25 mgl to 250 mgl. A maximum observed degradation was 1 mglh at 100 mgl of methylene chloride. The culture followed substrate inhibition kinetics and specific growth rate were fitted to different substrate inhibition models (Haldane, Aiba and Edwards models) by MATLAB 7.1. Among all models, Haldane was found to better fit with root mean square of 0.947. The biokinetic constants estimated using these models show good potential of the mixed microbial culture in methylene Chloride degradation. Escherichia coli and Staphylococcus aureus are predominant microbes present in the mixed culture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diesel Degradation and Bioemulsifiers Production Using Bubble-Column with a Microbial Consortium Isolated from Hydrocarbon-Contaminated Soil

Diesel is composed of various toxic compounds that can have a negative influence on the environment including plants, microorganisms, and even groundwater being used for cultivation and human consumption. Diesel oil biodegradation kinetics was investigated using bubble-column reactor and microbial consortium isolated from a hydrocarbons spill site and were assessed<em...

متن کامل

Phenol Biodegradation Kinetics in the Presence of Supplimentary Substrate

Biodegradation of phenol in the presence of glucose as a supplementary substrate was investigated with mixed microbial consortium isolated from waste effluent of coke-steel factory. Batch experiments were carried out at room temperature and pH value of 7. Initial phenol and glucose concentrations were in the range of 25-1000 mg/l and 500-3000 mg/l, respectively. In a dual substrates system the ...

متن کامل

Mathematical modelling of an annular photocatalytic reactor for methylene blue degradation under UV light irradiation using rGO-ZnO hybrid

The application of heterogeneous photocatalysis in industrial scale has been hindered by a lack of simple mathematical models that can be easily applied to reactor design and scale-up. This work intends to use a simple mathematical model for predicting methylene blue (MB) degradation in a slurry-annular photocatalytic reactor using zinc oxide (ZnO) hybridized with reduced graphene oxide (rGO)-Z...

متن کامل

Synthesis of polyhydroxyalkanoates in municipal wastewater treatment.

Biologically derived polyesters known as polyhydroxyalkanoates (PHAs) represent a potentially "sustainable" replacement to fossil-fuel-based thermoplastics. However, current commercial practices that produce PHA with pure microbial cultures grown on renewable, but refined, feedstocks (i.e., glucose) under sterile conditions do not represent a sustainable commodity. Here, we report on PHA produc...

متن کامل

Kinetics of Benzyl Chloride Production in a Bench Reactor Under Pressure with Stirrer (TECHNICAL NOTE)

Benzyl chloride is economically one of the most important starting materials for a large number of industrial syntheses. Far too much money is now spent to buy and import this valuable product. The production of benzyl chloride has been recognized as one of our national projects and budgeted by the National Iranian Petrochemical Organization in order to economize on the country’s foreign exchan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013