Multiple Sequence Comparison and HMMs

نویسنده

  • Christian N. S. Pedersen
چکیده

A sequence family is a set of homologous sequences. Members of a sequence family diverge during evolution and share similarities, but similarities that span the entire family might be weak compared to similarities that span only few members of the family. When comparing any two members of the family the faint similarities that span the entire family are thus likely to be shadowed by the stronger similarities between the particular two members. To detect similarities that span an entire sequence family it is therefore advisable to use other methods than just pairwise comparisons of the members. Comparison of several sequences is a difficult problem that involves many modeling choices. The comparison of several sequences is typical communicated using a multiple alignment that express how the sequences relate by substitutions, insertions, and deletions. In this section we focus on methods to compute multiple alignments and ways to extract a compact characterization of a sequence family based on a comparison of its members. Such a characterization can be used to search for unknown members of the family, and for comparison against the characterizations of other families.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Profile hidden Markov models

The recent literature on profile hidden Markov model (profile HMM) methods and software is reviewed. Profile HMMs turn a multiple sequence alignment into a position-specific scoring system suitable for searching databases for remotely homologous sequences. Profile HMM analyses complement standard pairwise comparison methods for large-scale sequence analysis. Several software implementations and...

متن کامل

Fuzzy Hidden Markov Models: A New Approach In Multiple Sequence Alignment

This paper proposes a novel method for aligning multiple genomic or proteomic sequences using a fuzzyfied Hidden Markov Model (HMM). HMMs are known to provide compelling performance among multiple sequence alignment (MSA) algorithms, yet their stochastic nature does not help them cope with the existing dependence among the sequence elements. Fuzzy HMMs are a novel type of HMMs based on fuzzy se...

متن کامل

Hidden Markov Models and their Applications in Biological Sequence Analysis

Hidden Markov models (HMMs) have been extensively used in biological sequence analysis. In this paper, we give a tutorial review of HMMs and their applications in a variety of problems in molecular biology. We especially focus on three types of HMMs: the profile-HMMs, pair-HMMs, and context-sensitive HMMs. We show how these HMMs can be used to solve various sequence analysis problems, such as p...

متن کامل

webPRC: the Profile Comparer for alignment-based searching of public domain databases

Profile-profile methods are well suited to detect remote evolutionary relationships between protein families. Profile Comparer (PRC) is an existing stand-alone program for scoring and aligning hidden Markov models (HMMs), which are based on multiple sequence alignments. Since PRC compares profile HMMs instead of sequences, it can be used to find distant homologues. For this purpose, PRC is used...

متن کامل

The use of structure information to increase alignment accuracy does not aid homologue detection with profile HMMs

MOTIVATION The best quality multiple sequence alignments are generally considered to derive from structural superposition. However, no previous work has studied the relative performance of profile hidden Markov models (HMMs) derived from such alignments. Therefore several alignment methods have been used to generate multiple sequence alignments from 348 structurally aligned families in the HOMS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001