On-line handwritten digit recognition based on trajectory and velocity modeling
نویسندگان
چکیده
The handwriting is one of the most familiar communication media. Pen based interface combined with automatic handwriting recognition offers a very easy and natural input method. The handwritten signal is on-line collected via a digitizing device, and it is classified as one pre-specified set of characters. The main techniques applied in our work include two fields of research. The first one consists of the modeling system of handwriting. In this area, we developed a novel method of the handwritten trajectory modeling based on elliptic and Beta representation. The second part of our work shows the implementation of a classifier consisting of the Multi-Layers Perception of Neural Networks (MLPNN) developed in a fuzzy concept. The training process of the recognition system is based on an association of the Self Organization Maps (SOM) with Fuzzy K-Nearest Neighbor Algorithms (FKNNA). To test the performance of our system we build 30,000 Arabic digits. The global recognition rate obtained by our recognition system is about 95.08%. 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملOff-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملDigital Pen for Handwritten Digit and Gesture Recognition Using Trajectory Recognition Algorithm Based On Triaxial Accelerometer- A Review
In this review paper we are going to discuss a systematic trajectory recognition algorithm framework that can construct effective classifiers for hand writing & gesture identification. Review of Digital Pen for Handwritten Digit and Gesture Recognition using Trajectory Recognition Algorithm based on Accelerometer is discuss for the identification of 2-D handwriting digits and 3-D hand gestures....
متن کاملDigit Recognition in Handwritten Weather Records
This paper addresses the automatic recognition of handwritten temperature values in weather records. The localization of table cells is based on line detection using projection profiles. Further, a stroke-preserving line removal method which is based on gradient images is proposed. The presented digit recognition utilizes features which are extracted using a set of filters and a Support Vector ...
متن کاملOn-Line Digit Recognition Using Off-Line Features
This paper describes a classification method for on-line handwritten digits based on off-line image representations. The goal is to use image-based features to improve classifier accuracy for on-line handwritten input. In this paper we describe an initial framework that can be used to achieve this goal. This framework for handwritten digit classification is based on genetic programming (GP). Se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 29 شماره
صفحات -
تاریخ انتشار 2008