Deep Transfer Learning with Joint Adaptation Networks
نویسندگان
چکیده
Deep networks rely on massive amounts of labeled data to learn powerful models. For a target task short of labeled data, transfer learning enables model adaptation from a different source domain. This paper addresses deep transfer learning under a more general scenario that the joint distributions of features and labels may change substantially across domains. Based on the theory of Hilbert space embedding of distributions, a novel joint distribution discrepancy is proposed to directly compare joint distributions across domains, eliminating the need of marginal-conditional factorization. Transfer learning is enabled in deep convolutional networks, where the dataset shifts may linger in multiple task-specific feature layers and the classifier layer. A set of joint adaptation networks are crafted to match the joint distributions of these layers across domains by minimizing the joint distribution discrepancy, which can be trained efficiently using back-propagation. Experiments show that the new approach yields state of the art results on standard domain adaptation datasets.
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملDomain Adaptation and Transfer Learning in StochasticNets
Transfer learning is a recent field of machine learning research that aims to resolve the challenge of dealing with insufficient training data in the domain of interest. This is a particular issue with traditional deep neural networks where a large amount of training data is needed. Recently, StochasticNets was proposed to take advantage of sparse connectivity in order to decrease the number of...
متن کاملDeep Transfer Network: Unsupervised Domain Adaptation
Domain adaptation aims at training a classifier in one dataset and applying it to a related but not identical dataset. One successfully used framework of domain adaptation is to learn a transformation to match both the distribution of the features (marginal distribution), and the distribution of the labels given features (conditional distribution). In this paper, we propose a new domain adaptat...
متن کاملOptimal Transport for Deep Joint Transfer Learning
Training a Deep Neural Network (DNN) from scratch requires a large amount of labeled data. For a classification task where only small amount of training data is available, a common solution is to perform fine-tuning on a DNN which is pre-trained with related source data. This consecutive training process is time consuming and does not consider explicitly the relatedness between different source...
متن کاملUnsupervised Domain Adaptation with Residual Transfer Networks
The recent success of deep neural networks relies on massive amounts of labeled data. For a target task where labeled data is unavailable, domain adaptation can transfer a learner from a different source domain. In this paper, we propose a new approach to domain adaptation in deep networks that can jointly learn adaptive classifiers and transferable features from labeled data in the source doma...
متن کامل