A New Detail-Preserving Regularization Scheme

نویسندگان

  • Weihong Guo
  • Jing Qin
  • Wotao Yin
چکیده

It is a challenging task to reconstruct images from their noisy, blurry, and/or incomplete measurements, especially those with important details and features such as medical magnetic resonance (MR) and CT images. We propose a novel regularization model that integrates two recently developed regularization tools: total generalized variation (TGV) by Bredies, Kunisch, and Pock; and shearlet transform by Labate, Lim, Kutyniok, and Weiss. The proposed model recovers both edges and fine details of images much better than the existing regularization models based on the total variation (TV) and wavelets. Specifically, while TV preserves sharp edges but suffers from oil painting artifacts, TGV “selectively regularizes” different image regions at different levels and thus largely avoids oil painting artifacts. Unlike the wavelet transform, which represents isotropic image features much more sparsely than anisotropic ones, the shearlet transform can efficiently represent anisotropic features such as edges, curves, and so on. The proposed model based on TGV and the shearlet transform has been tested in the compressive sensing context and produced high-quality images using fewer measurements than the state-of-the-art methods. The proposed model is solved by splitting variables and applying the alternating direction method of multiplier (ADMM). For certain sensing operators, including the partial Fourier transform, all the ADMM subproblems have closed-form solutions. Convergence of the algorithm is briefly mentioned. The numerical simulations presented in this paper use the incomplete Fourier, discrete cosine, and discrete wavelet measurements of MR images and natural images. The experimental results demonstrate that the proposed regularizer preserves various image features (including edges and textures), much better than the TV/wavelet based methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detail-Preserving Regularization Based Removal of Impulse Noise from Highly Corrupted Images

This paper proposes a new filtering scheme for eliminating random-valued impulse noise from gray images. In the first phase a noise detector is utilized to extract the noise candidates. Next, the algorithm applies a connected component analysis in order to gather the neighboring noisy pixels into separate sets of connected noise candidates. The corrupted pixels are restored using a detail prese...

متن کامل

A Lightweight Privacy-preserving Authenticated Key Exchange Scheme for Smart Grid Communications

Smart grid concept is introduced to modify the power grid by utilizing new information and communication technology. Smart grid needs live power consumption monitoring to provide required services and for this issue, bi-directional communication is essential. Security and privacy are the most important requirements that should be provided in the communication. Because of the complex design of s...

متن کامل

A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws

In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...

متن کامل

Combining Total Variation and Nonlocal Means Regularization for Edge Preserving Image Deconvolution

We propose a new edge preserving image deconvolution model by combining total variation and nonlocal means regularization. Natural images exhibit an high degree of redundancy. Using this redundancy, the nonlocal means regularization strategy is a good technique for detail preserving image restoration. In order to further improve the visual quality of the nonlocal means based algorithm, total va...

متن کامل

A New Detection Statistic for Random-Valued Impulse Noise Removal

This paper proposes a new image statistic for detecting random-valued impulse noise. Combining it with detail-preserving regularization, we obtain a powerful two-phase method for denoising even for noise level as high as 60%. Simulation results show that our method is significantly better than a number of existing techniques in terms of image restoration and noise detection.

متن کامل

Robust Fuzzy Content Based Regularization Technique in Super Resolution Imaging

Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Imaging Sciences

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014