Interplays between Soil-Borne Plant Viruses and RNA Silencing-Mediated Antiviral Defense in Roots
نویسندگان
چکیده
Although the majority of plant viruses are transmitted by arthropod vectors and invade the host plants through the aerial parts, there is a considerable number of plant viruses that infect roots via soil-inhabiting vectors such as plasmodiophorids, chytrids, and nematodes. These soil-borne viruses belong to diverse families, and many of them cause serious diseases in major crop plants. Thus, roots are important organs for the life cycle of many viruses. Compared to shoots, roots have a distinct metabolism and particular physiological characteristics due to the differences in development, cell composition, gene expression patterns, and surrounding environmental conditions. RNA silencing is an important innate defense mechanism to combat virus infection in plants, but the specific information on the activities and molecular mechanism of RNA silencing-mediated viral defense in root tissue is still limited. In this review, we summarize and discuss the current knowledge regarding RNA silencing aspects of the interactions between soil-borne viruses and host plants. Overall, research evidence suggests that soil-borne viruses have evolved to adapt to the distinct mechanism of antiviral RNA silencing in roots.
منابع مشابه
Differential Characteristics of Viral siRNAs between Leaves and Roots of Wheat Plants Naturally Infected with Wheat Yellow Mosaic Virus, a Soil-Borne Virus
RNA silencing is an important innate antiviral defense in plants. Soil-borne plant viruses naturally infect roots via soil-inhabiting vectors, but it is unclear how antiviral RNA silencing responds to virus infection in this particular tissue. In this study, viral small interfering RNA (siRNA) profiles from leaves and roots of wheat plants naturally infected with a soil-borne virus, wheat yello...
متن کاملEditorial: Plant Immunity against Viruses
Plant viruses, the simple obligate intracellular parasites with small genomes, rely entirely on host machineries for their life cycle including replication, intracellular (cell-to-cell) and systemic movement (Nelson and Citovsky, 2005). Virus infections pose serious threats to agriculture and cause huge economic losses. Despite encoding only a limited number of proteins, numerous interactions o...
متن کاملRNA silencing and antiviral defense in plants.
Much progress has been made recently in identifying the molecular components of RNA silencing in plants, and in understanding their roles in the biogenesis of small interfering RNAs and microRNAs, in RNA-directed DNA methylation, and in RNA-mediated antiviral defense. However, many crucial questions remain unanswered. What are the molecular bases of sense and antisense transgene-mediated silenc...
متن کاملTomato and Tobacco Phytoene Desaturase Gene Silencing by Virus-Induced Gene Silencing (VIGS) Technique
Background and Aims: Virus-Induced Gene Silencing (VIGS) is a virus vector technology that exploits antiviral defense mechanism. By infecting plants with recombinant viruses containing host genes inserted in the viral genome, VIGS achieves the RNA silencing process. The purpose of this study was to investigate the possibility of tomato (Lycopersicon esculentum Mill.) and tobacco (Nicotiana be...
متن کاملRNA-dependent RNA polymerase 1 from Nicotiana tabacum suppresses RNA silencing and enhances viral infection in Nicotiana benthamiana.
Endogenous eukaryotic RNA-dependent RNA polymerases (RDRs) produce double-stranded RNA intermediates in diverse processes of small RNA synthesis in RNA silencing pathways. RDR6 is required in plants for posttranscriptional gene silencing induced by sense transgenes (S-PTGS) and has an important role in amplification of antiviral silencing. Whereas RDR1 is also involved in antiviral defense in p...
متن کامل