Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB.

نویسندگان

  • Moritz Mehmet
  • Stefan Ast
  • Tobias Eberle
  • Sebastian Steinlechner
  • Henning Vahlbruch
  • Roman Schnabel
چکیده

Continuous-wave squeezed states of light at the wavelength of 1550 nm have recently been demonstrated, but so far the obtained factors of noise suppression still lag behind today's best squeezing values demonstrated at 1064 nm. Here we report on the realization of a half-monolithic nonlinear resonator based on periodically-poled potassium titanyl phosphate which enabled the direct detection of up to 12.3 dB of squeezing at 5 MHz. Squeezing was observed down to a frequency of 2 kHz which is well within the detection band of gravitational wave interferometers. Our results suggest that a long-term stable 1550 nm squeezed light source can be realized with strong squeezing covering the entire detection band of a 3rd generation gravitational-wave detector such as the Einstein Telescope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity.

We report the generation of squeezed vacuum states of light at 1550 nm with a broadband quantum noise reduction of up to 4.8 dB ranging from 5 MHz to 1.2 GHz sideband frequency. We used a custom-designed 2.6 mm long biconvex periodically-poled potassium titanyl phosphate (PPKTP) crystal. It featured reflectively coated end surfaces, 2.26 GHz of linewidth and generated the squeezing via optical ...

متن کامل

Demonstration of a quantum-enhanced fiber Sagnac interferometer.

The injection of squeezed light can be used to improve the sensitivity of an interferometer beyond the limit imposed by the zero-point fluctuation of the electromagnetic field. Here, we report on the realization of such a quantum-enhanced interferometer with a fiber-based Sagnac topology. Continuous wave squeezed states at 1550 nm with a noise reduction of 6.4 dB below shot noise were produced ...

متن کامل

Soliton squeezing in microstructure fiber.

We demonstrate, for the first time to our knowledge, the generation of squeezed light by means of soliton self-phase modulation in microstructure fiber. We observe and characterize the formation of solitons in the microstructure fiber at 1550 nm. A maximum squeezing of 2.7 dB is observed, corresponding to 4.0 dB after correcting for detection losses. The dependence of this quantum-noise reducti...

متن کامل

Stable control of 10 dB two-mode squeezed vacuum states of light.

Continuous variable entanglement is a fundamental resource for many quantum information tasks. Important protocols like superactivation of zero-capacity channels and finite-size quantum cryptography that provides security against most general attacks, require about 10 dB two-mode squeezing. Additionally, stable phase control mechanisms are necessary but are difficult to achieve because the tota...

متن کامل

Generation of strongly squeezed continuous-wave light at 1064 nm.

A compact and effcient source of amplitude-squeezed light is described. It employs a semi-monolithic degenerate MgO:LiNbO(3) optical parametric amplifier pumped by a frequency-doubled Nd:YAG laser at 532 nm. Injection-seeding of the amplifier by a 1064 nm wave permits active stabilization of the cavity length and stable operation. At a pump power of 380 mW, a maximum noise reduction of 6.5 dB i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 19 25  شماره 

صفحات  -

تاریخ انتشار 2011