Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers.

نویسندگان

  • Isabel Romero
  • Javier Aizpurua
  • Garnett W Bryant
  • F Javier García De Abajo
چکیده

The response of gold nanoparticle dimers is studied theoretically near and beyond the limit where the particles are touching. As the particles approach each other, a dominant dipole feature is observed that is pushed into the infrared due to interparticle coupling and that is associated with a large pileup of induced charge in the interparticle gap. The redshift becomes singular as the particle separation decreases. The response weakens for very small separation when the coupling across the interparticle gap becomes so strong that dipolar oscillations across the pair are inhibited. Lowerwavelength, higher-order modes show a similar separation dependence in nearly touching dimers. After touching, singular behavior is observed through the emergence of a new infrared absorption peak, also accompanied by huge charge pileup at the interparticle junction, if initial interparticle-contact is made at a single point. This new mode is distinctly different from the lowest mode of the separated dimer. When the junction is made by contact between flat surfaces, charge at the junction is neutralized and mode evolution is continuous through contact. The calculated singular response explains recent experiments on metallic nanoparticle dimers and is relevant in the design of nanoparticle-based sensors and plasmon circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmon guided modes in nanoparticle metamaterials.

Surface modes in nanostructured metallic metamaterial films are reported showing larger confinement than plasmons in metallic waveguides of similar dimensions, but in contrast to plasmons, the new modes have TE polarization. The metamaterial, formed by planar arrays of nearly-touching metallic nanoparticles, behaves as a high-index dielectric for the noted polarization, thus yielding well confi...

متن کامل

Collection and concentration of light by touching spheres: a transformation optics approach.

A general three-dimensional transformation optics approach is presented that yields analytical expressions for the relevant electromagnetic magnitudes in plasmonic phenomena at singular geometries. This powerful theoretical tool reveals the broadband response and superfocusing properties of touching metal nanospheres and provides an elegant physical description of the prominent field enhancemen...

متن کامل

Nonlocal study of ultimate plasmon hybridization.

Within our recently proposed generalized nonlocal optical response (GNOR) model, where nonlocal response is included by taking into account both convective and diffusive currents of the conduction electrons, we revisit the fundamental problem of an optically excited plasmonic dimer. We consider the transition from separated dimers via touching dimers to finally overlapping dimers. In particular...

متن کامل

Plasmon Hybridization in Nanoparticle Dimers

We apply the recently developed plasmon hybridization method to nanoparticle dimers, providing a simple and intuitive description of how the energy and excitation cross sections of dimer plasmons depend on nanoparticle separation. We show that the dimer plasmons can be viewed as bonding and antibonding combinations, i.e., hybridization of the individual nanoparticle plasmons. The calculated pla...

متن کامل

Adjustable Plasmonic Bandgap in One-Dimensional Nanograting Based on Localized and Propagating Surface Plasmons

Compared to the long history of plasmonic gratings, there are only a few studies regarding the bandgap in the propagation of plasmonic surface waves. Considering the previous studies on interpretation of plasmonic bandgap formation, we discuss this phenomenon using the effect of both surface plasmon polariton (SPP) and localized surface plasmon (LSP) for our fabricated one-dimensional metallic-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 14 21  شماره 

صفحات  -

تاریخ انتشار 2006