Regulatory function of hyperosmotic stress-induced signaling cascades in the expression of transcription factors and osmolyte transporters in freshwater Japanese eel primary gill cell culture.

نویسندگان

  • S C Chow
  • Chris K C Wong
چکیده

In the present study, we investigated the early activation of osmotic stress-related protein kinases, with the aim of characterizing their functional links with downstream effectors (i.e. transcription factors and osmolyte transporters). Freshwater eel primary gill cells were cultured in hypertonic medium (500 mosmol l(-1)) for 6 h. Protein lysates and total RNA were collected for western blotting and quantitative real-time PCR assays. In this study, the osmotic challenge stimulated histone H3 phosphorylation, various signaling pathways (i.e. ERK1/2, p38 MAPK, JNK, CREB, MARCKS and MLCK) and expression of some downstream effectors (i.e. Na(+)/K(+)-ATPase, TauT and Ostf). Increased phosphorylation of acetylated histone is known to promote chromatin relaxation for global gene transcription, probably leading to the activation of downstream effectors for osmotic responses. In addition, the importance of the p38 MAPK and MLCK pathways in the regulation of the expression of Na(+)/K(+)-ATPase and TauT was demonstrated. Inhibition of the p38 MAPK pathway by SB202190 reduced histone H3 phosphorylation and TauT mRNA expression. Moreover, inhibition of the MLCK pathway by ML-7 decreased the expression level of Na(+)/K(+)-ATPase but increased the transcript level of TauT. Collectively, the present study reveals possible functional links of osmosensing signaling cascades to the regulation of downstream effectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning and regulation of expression of the Na+-Cl--taurine transporter in gill cells of freshwater Japanese eels.

Our previous studies have demonstrated the hypertonic-induced expression of osmotic stress transcription factor and the regulatory volume increase (RVI) response in gill cells isolated from freshwater eels. In this study, we aimed to clone one of the organic osmolyte transporters, the Na+-Cl--taurine transporter (TauT), and to characterize its expression in anisosmotic conditions, using both in...

متن کامل

Dexamethasone (DEX) induces Osmotic stress transcription factor 1 (Ostf1) through the Akt-GSK3β pathway in freshwater Japanese eel gill cell cultures

Osmosensing and osmoregulatory processes undertaken in gills of euryhaline fish are coordinated by integrative actions of various signaling molecules/transcriptional factors. Considerable numbers of studies report the hyper- and hypo-osmoregulatory functions of fish gills, by illustrating the process of gill cell remodeling and the modulation of the expression of ion channels/transporters. Comp...

متن کامل

The cloning of eel osmotic stress transcription factor and the regulation of its expression in primary gill cell culture.

In the present study, we aimed to clone an osmotic stress transcriptional factor (Ostf) from gill cells of Japanese eels. In addition, we measured its expression in Percoll-gradient-isolated gill chloride (CC) and pavement (PVC) cells and determined the regulation of its expression in primary gill cell culture. Using degenerative primers and RACE techniques, we cloned a cDNA of 615bp, encompass...

متن کامل

Regulation of osmotic stress transcription factor 1 (Ostf1) in tilapia (Oreochromis mossambicus) gill epithelium during salinity stress.

Mechanisms of induction of osmotic stress transcription factor 1 (Ostf1) were analyzed in gill epithelium of tilapia exposed to salinity stress. Experiments with primary cultures of gill epithelial cells revealed that hyperosmotic Ostf1 induction was independent of systemic factors. In addition, the synthetic glucocorticoid receptor agonist dexamethasone did not affect Ostf1 levels, arguing aga...

متن کامل

The Jak-Stat Signaling Pathway of Interferons System: Snapshots

Interferons (IFNs) are a family of small regulatory glycoproteins that play a central role in the defense against viral infections. Although IFNs have been initially discovered as antiviral factors, today they are known as an integral part of the cytokine network that affect a wide range of biological processes. IFNs exert their pleiotropic effects through their multisubunit cell surface recept...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 214 Pt 8  شماره 

صفحات  -

تاریخ انتشار 2011