Mean body temperature does not modulate eccrine sweat rate during upright tilt.
نویسندگان
چکیده
Conflicting reports exist about the role of baroreflexes in efferent control of eccrine sweat rate. These conflicting reports may be due to differing mean body temperatures between studies. The purpose of this project was to test the hypothesis that mean body temperature modulates the effect of head-up tilt on sweat rate and skin sympathetic nerve activity (SSNA). To address this question, mean body temperature (0.9.internal temperature + 0.1.mean skin temperature), SSNA (microneurography of peroneal nerve, n = 8), and sweat rate (from an area innervated by the peroneal nerve and from two forearm sites, one perfused with neostigmine to augment sweating at lower mean body temperatures and the second with the vehicle, n = 12) were measured in 13 subjects during multiple 30 degrees head-up tilts during whole body heating. At the end of the heat stress, mean body temperature (36.8 +/- 0.1 to 38.0 +/- 0.1 degrees C) and sweat rate at all sites were significantly elevated. No significant correlations were observed between mean body temperature and the change in SSNA during head-up tilt (r = 0.07; P = 0.62), sweating within the innervated area (r = 0.06; P = 0.56), sweating at the neostigmine treated site (r = 0.04; P = 0.69), or sweating at the control site (r = 0.01; P = 0.94). Also, for each tilt throughout the heat stress, there were no significant differences in sweat rate (final tilt sweat rates were 0.69 +/- 0.11 and 0.68 +/- 0.11 mg.cm(-2).min(-1) within the innervated area; 1.04 +/- 0.16 and 1.06 +/- 0.16 mg.cm(-2).min(-1) at the neostigmine-treated site; and 0.85 +/- 0.15 and 0.85 +/- 0.15 mg.cm(-2).min(-1) at the control site, for supine and tilt, respectively). Hence, these data indicate that mean body temperature does not modulate eccrine sweat rate during baroreceptor unloading induced via 30 degrees head-up tilt.
منابع مشابه
Vestibular activation does not influence skin sympathetic nerve responses during whole body heating.
The cutaneous vasculature and eccrine sweat glands are modified by both thermal and nonthermal factors. To determine the effect of thermal stress on the vestibulosympathetic reflex, skin sympathetic nerve activity (SSNA) and cutaneous end-organ responses were measured in 10 subjects during static head-down rotation (HDR) and dynamic yaw and pitch (30 cycles/min) to activate the otolith organs a...
متن کاملMechanisms and controllers of eccrine sweating in humans.
Human body temperature is regulated within a very narrow range. When exposed to hyperthermic conditions, via environmental factors and/or increased metabolism, heat dissipation becomes vital for survival. In humans, the primary mechanism of heat dissipation, particularly when ambient temperature is higher than skin temperature, is evaporative heat loss secondary to sweat secretion from eccrine ...
متن کاملNeural control and mechanisms of eccrine sweating during heat stress and exercise.
In humans, evaporative heat loss from eccrine sweat glands is critical for thermoregulation during exercise and/or exposure to hot environmental conditions, particularly when environmental temperature is greater than skin temperature. Since the time of the ancient Greeks, the significance of sweating has been recognized, whereas our understanding of the mechanisms and controllers of sweating ha...
متن کاملThe Sweat Gland, How Does It Work, and What Factors Affect Sweat Rate and Composition?
Introduction 1 Types of Exocrine Sweat Glands 2 Structure of the Eccrine Sweat Gland 2 Secretory Coil 2 Reabsorptive Sweat Duct 2 Sympathetic Nervous System Control of Sweating 3 Substances Used To Determine Sweat Gland Function In Vitro 3 Formation of Primary Sweat 4 Calcium Mobilisation Mediators 4 Effect of Increased Intracellular Calcium on Sweat Secretion 5 Other Biochemical Requirements f...
متن کامل15 degrees head-down tilt attenuates the postexercise reduction in cutaneous vascular conductance and sweating and decreases esophageal temperature recovery time.
The following study examined the effect of 15 degrees head-down tilt (HDT) on postexercise heat loss and hemodynamic responses. We tested the hypothesis that recovery from dynamic exercise in the HDT position would attenuate the reduction in the heat loss responses of cutaneous vascular conductance (CVC) and sweating relative to upright seated (URS) recovery in association with an augmented hem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 98 4 شماره
صفحات -
تاریخ انتشار 2005