A General Inertial Proximal Point Method for Mixed Variational Inequality Problem
نویسندگان
چکیده
In this paper, we first propose a general inertial proximal point method for the mixed variational inequality (VI) problem. Based on our knowledge, without stronger assumptions, convergence rate result is not known in the literature for inertial type proximal point methods. Under certain conditions, we are able to establish the global convergence and a o(1/k) convergence rate result (under certain measure) of the proposed general inertial proximal point method. We then show that the linearized alternating direction method of multipliers (ADMM) for separable convex optimization with linear constraints is an application of a general proximal point method, provided that the algorithmic parameters are properly chosen. As byproducts of this finding, we establish global convergence and O(1/k) convergence rate results of the linearized ADMM in both ergodic and nonergodic sense. In particular, by applying the proposed inertial proximal point method for mixed VI to linearly constrained separable convex optimization, we obtain an inertial version of the linearized ADMM for which the global convergence is guaranteed. We also demonstrate the effect of the inertial extrapolation step via experimental results on the compressive principal component pursuit problem.
منابع مشابه
A General Inertial Proximal Point Algorithm for Mixed Variational Inequality Problem
In this paper, we first propose a general inertial proximal point algorithm (PPA) for the mixed variational inequality (VI) problem. Based on our knowledge, without stronger assumptions, convergence rate result is not known in the literature for inertial type PPAs. Under certain conditions, we are able to establish the global convergence and nonasymptotic O(1/k) convergence rate result (under c...
متن کاملAn Iterative Scheme for Generalized Equilibrium, Variational Inequality and Fixed Point Problems Based on the Extragradient Method
The problem ofgeneralized equilibrium problem is very general in the different subjects .Optimization problems, variational inequalities, Nash equilibrium problem and minimax problems are as special cases of generalized equilibrium problem. The purpose of this paper is to investigate the problem of approximating a common element of the set of generalized equilibrium problem, variational inequal...
متن کاملGraph Convergence for H(.,.)-co-Accretive Mapping with over-Relaxed Proximal Point Method for Solving a Generalized Variational Inclusion Problem
In this paper, we use the concept of graph convergence of H(.,.)-co-accretive mapping introduced by [R. Ahmad, M. Akram, M. Dilshad, Graph convergence for the H(.,.)-co-accretive mapping with an application, Bull. Malays. Math. Sci. Soc., doi: 10.1007/s40840-014-0103-z, 2014$] and define an over-relaxed proximal point method to obtain the solution of a generalized variational inclusion problem ...
متن کاملA Hybrid Inertial Projection-proximal Method for Variational Inequalities
The hybrid proximal point algorithm introduced by Solodov and Svaiter allowing significant relaxation of the tolerance requirements imposed on the solution of proximal subproblems will be combined with the inertial method introduced by Alvarez and Attouch which incorporates second order information to achieve faster convergence. The weak convergence of the resulting method will be investigated ...
متن کاملInertial Primal-dual Algorithms for Structured Convex Optimization
The primal-dual algorithm recently proposed by Chambolle & Pock (abbreviated as CPA) for structured convex optimization is very efficient and popular. It was shown by Chambolle & Pock in [16] and also by Shefi & Teboulle in [49] that CPA and variants are closely related to preconditioned versions of the popular alternating direction method of multipliers (abbreviated as ADM). In this paper, we ...
متن کامل