Kinsenoside Ameliorates Oxidative Stress-Induced RPE Cell Apoptosis and Inhibits Angiogenesis via Erk/p38/NF-κB/VEGF Signaling
نویسندگان
چکیده
The pathological superoxidative condition that retinal pigment epithelium (RPE) cells experience contributed to the advancement of age-related macular degeneration (AMD), which was accompanied by significant neovascularization. Therefore, the discovery of novel pharmacological candidates to ameliorate oxidative damage (H2O2) against RPE cells and inhibit the following angiogenesis simultaneously is urgently needed. Herein, we found that kinsenoside (Kin), an active component derived from Anoectochilus roxburghii, was able to protect RPE cells effectively and attenuate subsequent angiogenesis. In this study, H2O2-induced oxidative injury reduced RPE cell viability and increased cell apoptosis, which was significantly rescued by the treatment with Kin. Compared with H2O2 alone, Kin decreased the levels of Bax and increased the production of Bcl-2 in RPE cells. H2O2-stimulated VEGF up-regulation was inhibited by Kin treatment. Human umbilical vein endothelial cell (HUVEC) neovascularization induced by conditioned medium (CM) from H2O2-stimulated RPE cells was attenuated by treatment with Kin, VEGF antagonist, NF-κB, Erk-MAPK, and p38-MAPK inhibitors. Additionally, H2O2-activated phosphorylated expression of IκBα, p65, Erk, and p38 in RPE cells was inhibited by treatment with Kin. Taken together, Kin protected RPE from apoptosis against oxidative stress while simultaneously decreasing apoptosis-related neovascularization. This could be ascribed to the inhibition of Erk/p38/NF-κB signaling by Kin that contributed to the resulting decreased VEGF expression in H2O2-treated RPE cells.
منابع مشابه
Protective role of licochalcone B against ethanol-induced hepatotoxicity through regulation of Erk signaling
Objective(s): Oxidative stress has been established as a key cause of alcohol-induced hepatotoxicity. Licochalcone B, an extract of licorice root, has shown antioxidative properties. This study was to investigate the effects and mechanisms of licochalcone B in ethanol-induced hepatic injury in an in vitro study. Materials and Methods: An in vitro model of Ethanol-induced cytotoxicity in BRL cel...
متن کاملGambogic acid inhibits LPS-induced macrophage pro-inflammatory cytokine production mainly through suppression of the p38 pathway
Objective(s): In traditional Chinese medicine, gamboge can detoxify bodies, kill parasites, and act as a hemostatic agent. Recent studies have demonstrated that gambogic acid (GBA) suppressed inflammation in arthritis, and also presented antitumor effect. Thus, this study investigated the new biological properties of GBA on macrophages.Materials and Methods: RAW 264.7 cells were pretreated with...
متن کامل3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions.
Oxidative stress in the retinal pigment epithelium (RPE) can lead to the pathological causes of age-related macular degeneration (AMD). Hypoxia induces oxidative damage in retinal pigment epithelial cells (RPE cells). In this study, we investigated the capacity of 3,3'-diindolylmethane (DIM) to reduce the expression of vascular endothelial growth factor (VEGF) under hypoxic conditions, as well ...
متن کاملBaicalein, a Bioflavonoid, Prevents Cisplatin-Induced Acute Kidney Injury by Up-Regulating Antioxidant Defenses and Down-Regulating the MAPKs and NF-κB Pathways
Acute renal failure is a serious complication of the anticancer drug cisplatin. The potential role of baicalein, a naturally occurring bioflavonoid on cisplatin-induced renal injury is unknown. Here, we assessed the effect of baicalein against a murine model of cisplatin-induced acute renal failure and investigated the underlying possible mechanisms. Renal function, kidney histology, inflammati...
متن کاملAttenuation of TNF-α-Induced Inflammatory Injury in Endothelial Cells by Ginsenoside Rb1 via Inhibiting NF-κB, JNK and p38 Signaling Pathways
It is currently believed that inflammation plays a central role in the pathophysiology of atherosclerosis. Oxidative stress and redox-sensitive transcription factors are implicated in the process. Ginsenoside Rb1, a major active ingredient in processed Radix notoginseng, has attracted widespread attention because of its potential to improve cardiovascular function. However, the effects of ginse...
متن کامل