Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels.
نویسندگان
چکیده
Structured xylan-based hydrogels, reinforced with cellulose nanocrystals (CNCs), have successfully been prepared from water suspensions by cross-linking during freeze-casting. In order to induce cross-linking during the solidification/sublimation operation, xylan was first oxidized using sodium periodate to introduce dialdehydes. The oxidized xylan was then mixed with CNCs after which the suspension was frozen unidirectionally in order to control the ice crystal formation and by that the pore morphology of the material. Finally the ice crystal templates were removed by freeze-drying. During the freeze-casting process hemiacetal bonds are formed between the aldehyde groups and hydroxyl groups, either on other xylan molecules or on CNCs, which cross-links the system. The proposed cross-linking reaction was confirmed by using cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) spectroscopy. The pore morphology of the obtained materials was analyzed by scanning electron microscopy (SEM). The materials were also tested for compressive strength properties, both in dry and water swollen state. All together this study describes a novel combined freeze-casting/cross-linking process which enables fabrication of nanoreinforced biopolymer-based hydrogels with controlled porosity and 3-D architecture.
منابع مشابه
High Oxygen Nanocomposite Barrier Films based on Xylan and Nanocrystalline Cellulose
The goal of this work is to produce nanocomposite film with low oxygen permeability by casting an aqueous solution containing xylan, sorbitol and nanocrystalline cellulose. The morphology of the resulting nanocomposite films was examined by scanning electron microscopy and atomic force microscopy which showed that control films containing xylan and sorbitol had a more open structure as compared...
متن کاملSimple approach to reinforce hydrogels with cellulose nanocrystals.
The physical crosslinking of colloidal nanoparticles via dynamic and directional non-covalent interactions has led to significant advances in composite hydrogels. In this paper, we report a simple approach to fabricate tough, stretchable and hysteretic isotropic nanocomposite hydrogels, where rod-like cellulose nanocrystals (CNCs) are encapsulated by flexible polymer chains of poly(N,N-dimethyl...
متن کاملEnhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking.
While injectable hydrogels have several advantages in the context of biomedical use, their generally weak mechanical properties often limit their applications. Herein, we describe in situ-gelling nanocomposite hydrogels based on poly(oligoethylene glycol methacrylate) (POEGMA) and rigid rod-like cellulose nanocrystals (CNCs) that can overcome this challenge. By physically incorporating CNCs int...
متن کاملFunctionalization of dextran, xylan and nanofibrillated cellulose using click-chemistry in aqueous media
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Nikolaos Pahimanolis Name of the doctoral dissertation Functionalization of dextran, xylan and nanofibrillated cellulose using click-chemistry in aqueous media Publisher School of Chemical Technology Unit Department of Biotechnology and Chemical Technology Series Aalto University publication series DOCTORAL DISSERTATIONS 58/20...
متن کاملHydrogels Prepared from Cross-Linked Nanofibrillated Cellulose
Nanocomposite hydrogels were developed by cross-linking nanofibrillated cellulose with poly(methyl vinyl ether-co-maleic acid) and polyethylene glycol. The cross-linked hydrogels showed enhanced water absorption and gel content with the addition of nanocellulose. In addition, the thermal stability, mechanical strength, and modulus increased with an increase in the amount of nanocellulose in hyd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carbohydrate polymers
دوره 100 شماره
صفحات -
تاریخ انتشار 2014