Geometric Properties of the Icosahedral-Hexagonal Grid on the Two-Sphere
نویسندگان
چکیده
An icosahedral-hexagonal grid on the two-sphere is created by dividing the faces of an icosahedron and projecting the vertices onto the sphere. This grid and its Voronoi tessellation have several desirable features for numerical simulations of physical processes on the sphere. While several methods to construct the icosahedral grid mesh have been proposed over the past decades, and empirical data have been collected to understand and help improve the grid, rarely have analytical analyses been done to investigate the basic geometric properties of the grid. In this paper, we present an analytical analysis of several geometric properties of the icosahedral grids based on two basic constructions: recursive and nonrecursive construction. We point out that these geometric properties can be improved with modified construction procedures. We demonstrate how these improvements impact the numerical integration of PDEs over the sphere.
منابع مشابه
A balanced semi-implicit discretization on icosahedral C-grids for the linear shallow water equations on the sphere
The linear shallow water equations on the sphere are discretized on a quasi-uniform, geodesic, icosahedral Voronoi-Delaunay grid with a C-grid variable arrangement and semi-implicit time discretization. A finite volume discretization is employed for the continuity equation in conservation law form, using as control volumes either the hexagonal/pentagonal or the dual triangular cells. A geostrop...
متن کاملA Note on the First Geometric-Arithmetic Index of Hexagonal Systems and Phenylenes
The first geometric-arithmetic index was introduced in the chemical theory as the summation of 2 du dv /(du dv ) overall edges of the graph, where du stand for the degree of the vertex u. In this paper we give the expressions for computing the first geometric-arithmetic index of hexagonal systems and phenylenes and present new method for describing hexagonal system by corresponding a simple g...
متن کاملAdaptation of Structured Grid for Supersonic and Transonic Flows
Two distinct redistribution grids - adaptation techniques, spring analogy and elliptic grid generator are applied to two-dimensional steady, inviscid, shocked flows, and the ability of each technique is examined and compared. Euler equations are solved base on Roe's Reimann solver approach to simulate supersonic flow around a sphere, transonic flow about an airfoil and supersonic flow in a symm...
متن کاملGazeau- Klouder Coherent states on a sphere
In this paper, we construct the Gazeau-Klauder coherent states of a two- dimensional harmonic oscillator on a sphere based on two equivalent approaches. First, we consider the oscillator on the sphere as a deformed (non-degenerate) one-dimensional oscillator. Second, the oscillator on the sphere is considered as the usual (degenerate) two--dimensional oscillator. Then, by investigating the quan...
متن کاملStress Analysis of Magneto Thermoelastic and Induction Magnetic Filed in FGM Hallow Sphere
In this paper a closed form solution for one-dimensional magnetothermoelastic problem in a functionally graded material (FGM) hollow sphere placed in a uniform magnetic field and temperature field subjected to an internal pressure is obtained using the theory of magnetothermoelasticity. Hyper-geometric functions are employed to solve the governing equation. The material properties through the g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 33 شماره
صفحات -
تاریخ انتشار 2011