Manganese-induced neurotoxicity: the role of astroglial-derived nitric oxide in striatal interneuron degeneration.

نویسندگان

  • Xuhong Liu
  • Kelly A Sullivan
  • James E Madl
  • Marie Legare
  • Ronald B Tjalkens
چکیده

Chronic exposure to excessive manganese (Mn) is the cause of a neurodegenerative movement disorder, termed manganism, resulting from degeneration of neurons within the basal ganglia. Pathogenic mechanisms underlying this disorder are not fully understood but involve inflammatory activation of glial cells within the basal ganglia. It was postulated in the present studies that reactive astrocytes are involved in neuronal injury from exposure to Mn through increased release of nitric oxide. C57Bl/6 mice subchronically exposed to Mn by intragastric gavage had increased levels of Mn in the striatum and displayed diminutions in both locomotor activity and striatal DA content. Mn exposure resulted in neuronal injury in the striatum and globus pallidus, particularly in regions proximal to the microvasculature, indicated by histochemical staining with fluorojade and cresyl fast violet. Neuropathological assessment revealed marked perivascular edema, with hypertrophic endothelial cells and diffusion of serum albumin into the perivascular space. Immunofluorescence studies employing terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (DUTP)-biotin nick-end labeling revealed the presence of apoptotic neurons expressing neuronal nitric oxide synthase (NOS), choline acetyltransferase, and enkephalin in both the striatum and globus pallidus. In contrast, soma and terminals of dopaminergic neurons were morphologically unaltered in either the substantia nigra or striatum, as indicated by immunohistochemical staining for tyrosine hydroxylase. Regions with evident neuronal injury also displayed increased numbers of reactive astrocytes that coexpressed inducible NOS2 and localized with areas of increased neuronal staining for 3-nitrotyrosine protein adducts, a marker of NO formation. These data suggest a role for astrocyte-derived NO in injury to striatal-pallidal interneurons from Mn intoxication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serofendic acid, a sulfur-containing diterpenoid derived from fetal calf serum, attenuates reactive oxygen species-induced oxidative stress in cultured striatal neurons.

We previously identified a novel endogenous substance, serofendic acid, from a lipophilic extract of fetal calf serum. Serofendic acid protects cultured cortical neurons against the cytotoxicity of glutamate and nitric oxide. Here, we reported the protective effect of serofendic acid on reactive oxygen species-induced oxidative stress using primary rat striatal cultures. In addition, we compare...

متن کامل

Ethyl pyruvate rescues nigrostriatal dopaminergic neurons by regulating glial activation in a mouse model of Parkinson's disease.

This study examined whether ethyl pyruvate (EP) promotes the survival of nigrostriatal dopaminergic (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. MPTP induced degeneration of nigrostriatal DA neurons and glial activation as visualized by tyrosine hydroxylase, macrophage Ag complex-1, and/or glial fibrillary acidic protein immunoreact...

متن کامل

Protective effect of melatonin on 3-NP induced striatal interneuron injury in rats.

To confirm the effect of melatonin on 3-nitropropionic acid (3-NP)-induced striatal interneuron injury in rats, behavioral test, histology, immunohistochemistry and Western blotting were respectively used to characterize the behavioral changes of experimental animals in motor and cognition, the morphological changes of striatal interneurons and the expression level of protein markers induced by...

متن کامل

Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption.

Methamphetamine (METH)-induced neurotoxicity is characterized by a long-lasting depletion of striatal dopamine (DA) and serotonin as well as damage to striatal dopaminergic and serotonergic nerve terminals. Several hypotheses regarding the mechanism underlying METH-induced neurotoxicity have been proposed. In particular, it is thought that endogenous DA in the striatum may play an important rol...

متن کامل

Gene deletion of nos2 protects against manganese-induced neurological dysfunction in juvenile mice.

The mechanisms underlying cognitive and neurobehavioral abnormalities associated with childhood exposure to manganese (Mn) are not well understood but may be influenced by neuroinflammatory activation of microglia and astrocytes that results in nitrosative stress due to expression of inducible nitric oxide synthase (iNOS/NOS2). We therefore postulated that gene deletion of NOS2 would protect ag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 91 2  شماره 

صفحات  -

تاریخ انتشار 2006