Spiking neuron network Helmholtz machine

نویسندگان

  • Pavel Sountsov
  • Paul Miller
چکیده

An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies with a Generalized Neuron Based PSS on a Multi-Machine Power System

An artificial neural network can be used as an intelligent controller to control non-linear, dynamic system through learning. It can easily accommodate non-linearities and time dependencies. Most common multi-layer feed-forward neural networks have the drawbacks of large number of neurons and hidden layers required to deal with complex problems and require large training time. To overcome these...

متن کامل

Homogeneous Spiking Neural P Systems

Spiking neural P systems are a class of distributed parallel computing models inspired from the way the neurons communicate with each other by means of electrical impulses (called “spikes”). In this paper, we consider a restricted variant of spiking neural P systems, called homogeneous spiking neural P systems, where each neuron has the same set of rules. The universality of homogeneous spiking...

متن کامل

Digital spiking neuron and its learning for approximation of various spike-trains

A digital spiking neuron is a wired system of shift registers and can generate various spike-trains by adjusting the wiring pattern. In this paper we analyze the basic relations between the wiring pattern and characteristics of the spike-train. Based on the relations, we present a learning algorithm which utilizes successive changes of the wiring pattern. It is shown that the neuron can reprodu...

متن کامل

A Minimal Spiking Neural Network to Rapidly Train and Classify Handwritten Digits in Binary and 10-Digit Tasks

This paper reports the results of experiments to develop a minimal neural network for pattern classification. The network uses biologically plausible neural and learning mechanisms and is applied to a subset of the MNIST dataset of handwritten digits. The research goal is to assess the classification power of a very simple biologically motivated mechanism. The network architecture is primarily ...

متن کامل

Reward Modulated Spike Timing Dependent Plasticity Based Learning Mechanism in Spiking Neural Networks

Spiking Neural Networks (SNNs) are one of the recent advances in machine learning that aim to further emulate the computations performed in the human brain. The efficiency of such networks stems from the fact that information is encoded as spikes, which is a paradigm shift from the computing model of the traditional neural networks. Spike Timing Dependent Plasticity (STDP), wherein the synaptic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015