Self-Consistent Strictly Localized Orbitals.

نویسندگان

  • Pierre-François Loos
  • Xavier Assfeld
چکیده

Among all the Quantum Mechanics/Molecular Mechanics (QM/MM) methods available to describe large molecular systems, the Local Self-Consistent Field/MM (LSCF/MM) one uses frozen doubly occupied Strictly Localized Bonding Orbital (SLBO) to connect the QM fragment to the one treated at the MM level. This approach is correct as long as the QM part is large enough to minimize the artifacts that could arise because of the fixed SLBO. If one wants to decrease the size of the QM subsystem, one clearly needs to help the SLBO to relax according to the variations of the global wave function. Also, the SLBO have to adjust itself according to the modification of the surrounding if we want to improve the method. Here, we present a modification of the original LSCF method called Optimized LSCF (OLSCF) where each SLBO is allowed to mix with its corresponding Strictly Localized Anti Bonding Orbital (SLABO) resulting in an adjustment of the two-electron bond described by a self-consistent SLBO (SCSLBO). We test the new methodology against the modification of the QM part (internal perturbation) and against the variation of the surroundings (external perturbation) represented either by a dielectric continuum or by a classical point charge. In each case the initial SLBO is the symmetric C-C SLBO of the ethane molecule. It is shown that the optimized SCSLBO presents a final polarity in perfect agreement with what could be expected as the result of a reaction to the internal or external perturbation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel, linear-scaling building-block and embedding method based on localized orbitals and orbital-specific basis sets.

We present a linear scaling method for the energy minimization step of semiempirical and first-principles Hartree-Fock and Kohn-Sham calculations. It is based on the self-consistent calculation of the optimum localized orbitals of any localization method of choice and on the use of orbital-specific basis sets. The full set of localized orbitals of a large molecule is seen as an orbital mosaic w...

متن کامل

Fragment-Localized Kohn-Sham Orbitals via a Singles Configuration-Interaction Procedure and Application to Local Properties and Intermolecular Energy Decomposition Analysis.

As for generating localized Hartree-Fock orbitals, we propose a potentially linear-scaling singles-CI scheme to construct fragment-localized density functional theory (DFT) orbitals for molecular systems as water clusters. Due to the use of a deformation step instead of a localization step, the influence of the environment on each separate molecule can be studied in detail. The generated orbita...

متن کامل

Self-consistent field convergence for proteins: a comparison of full and localized-molecular-orbital schemes.

Proteins in the gas phase present an extreme (and unrealistic) challenge for self-consistent-field iteration schemes because their ionized groups are very strong electron donors or acceptors, depending on their formal charge. This means that gas-phase proteins have a very small band gap but that their frontier orbitals are localized compared to "normal" conjugated semiconductors. The frontier o...

متن کامل

Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package.

Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerica...

متن کامل

Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. II. Application of the local basis equation

The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009, 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self-consis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 3 3  شماره 

صفحات  -

تاریخ انتشار 2007