Bounds of the Spectral Radius and the Nordhaus-Gaddum Type of the Graphs
نویسندگان
چکیده
The Laplacian spectra are the eigenvalues of Laplacian matrix L(G) = D(G) - A(G), where D(G) and A(G) are the diagonal matrix of vertex degrees and the adjacency matrix of a graph G, respectively, and the spectral radius of a graph G is the largest eigenvalue of A(G). The spectra of the graph and corresponding eigenvalues are closely linked to the molecular stability and related chemical properties. In quantum chemistry, spectral radius of a graph is the maximum energy level of molecules. Therefore, good upper bounds for the spectral radius are conducive to evaluate the energy of molecules. In this paper, we first give several sharp upper bounds on the adjacency spectral radius in terms of some invariants of graphs, such as the vertex degree, the average 2-degree, and the number of the triangles. Then, we give some numerical examples which indicate that the results are better than the mentioned upper bounds in some sense. Finally, an upper bound of the Nordhaus-Gaddum type is obtained for the sum of Laplacian spectral radius of a connected graph and its complement. Moreover, some examples are applied to illustrate that our result is valuable.
منابع مشابه
On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
متن کاملNordhaus-Gaddum type results for the Harary index of graphs
The emph{Harary index} $H(G)$ of a connected graph $G$ is defined as $H(G)=sum_{u,vin V(G)}frac{1}{d_G(u,v)}$ where $d_G(u,v)$ is the distance between vertices $u$ and $v$ of $G$. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ ...
متن کاملSome Upper Bounds for the Laplacian Spectral Radius of the Nordhaus-Gaddum Type
Let G be a simple graph with n vertices, and let G be its complement. Let δ(G) = δ and ∆(G) = ∆ be the minimum degree and the maximum degree of vertices of G, respectively. In this paper, some upper bounds for the Laplacian spectral radius of the Nordhaus-Gaddum type are obtained as follows: λ1(G) + λ1(G) ≤ 3n+∆− δ − 5 + √ 2(n+∆)2 + 2(δ + 1)2 − 8nδ 2 , λ1(G) + λ1(G) ≤ n+∆− δ − 1 + √( 2− 1 ω(G) ...
متن کاملStrength of strongest dominating sets in fuzzy graphs
A set S of vertices in a graph G=(V,E) is a dominating set ofG if every vertex of V-S is adjacent to some vertex of S.For an integer k≥1, a set S of vertices is a k-step dominating set if any vertex of $G$ is at distance k from somevertex of S. In this paper, using membership values of vertices and edges in fuzzy graphs, we introduce the concepts of strength of strongestdominating set as well a...
متن کاملSharp Bounds on the PI Spectral Radius
In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013