Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria

نویسندگان

  • Shan-Wei Li
  • Guo-Ping Sheng
  • Yuan-Yuan Cheng
  • Han-Qing Yu
چکیده

Although the capacity for electroactive bacteria to convert environmental metallic minerals and organic pollutants is well known, the role of the redox properties of microbial extracellular polymeric substances (EPS) in this process is poorly understood. In this work, the redox properties of EPS from two widely present electroactive bacterial strains (Shewanella oneidensis and Pseudomonas putida) were explored. Electrochemical analysis demonstrates that the EPS extracted from the two strains exhibited redox properties. Spectroelectrochemical and protein electrophoresis analyses indicate that the extracted EPS from S. oneidensis and P. putida contained heme-binding proteins, which were identified as the possible redox components in the EPS. The results of heme-mediated behavior of EPS may provide an insight into the important roles of EPS in electroactive bacteria to maximize their redox capability for biogeochemical cycling, environmental bioremediation and wastewater treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Carbon and Nitrogen Sources for Extracellular Polymeric Substances Production by Chryseobacterium indologenes MUT.2

Background: Bacterial Extracellular Polymeric Substances (EPS) are environmental friendly and versatile polymeric materials that are used in a wide range of industries such as: food, textile, cosmetics, and pharmaceuticals. To make the production process of the EPS cost-effective, improvements in the production yield is required which could be implemented through application of processes such a...

متن کامل

Effect of Extracellular Polymeric Substances on Surface Properties and Attachment Behavior of Acidithiobacillus ferrooxidans

Bacterial contact leaching of ores is more effective than non-contact leaching. Adhesion is the first step for leaching bacteria to form a biofilm on a mineral surface. Extracellular polymeric substances (EPS) are pivotal for mediating bacterial adhesion to a substratum. In order to clarify the role of EPS, we measured the adhesion forces between chalcopyrite-, sulfuror FeSO4·7H2O-grown cells o...

متن کامل

The Removal Effect of Pollutants and Components in Extracellular Polymeric Substances from Aerobic Granular Sludge in Simultaneous Removal of Organic Matter and Ammonia Nitrogen

Biological processes, such as activated sludge and granular sludge are widely used to remove organic pollutants as well as inorganic pollutants, such as metallic elements1–3, which are known to be potentially toxic, and impact the performance of biological waste treatment processes4. Granular sludge is a dense aggregate of microorganisms, minerals, and microbial produced compounds such as extra...

متن کامل

Sorption of ferrous and ferric iron by extracellular polymeric substances (EPS) from acidophilic bacteria.

The sorption of Fe(II) and Fe(III) by extracellular polymeric substances (EPS) of acidophilic bacteria Acidiphilium 3.2Sup(5) and Acidithiobacillus ferrooxidans, harvested from the ecosystem of the Tinto River (Huelva, Spain), was investigated. EPS from mixed cultures of both bacteria (EPS(mixed)) and pure cultures of A. 3.2Sup(5) (EPS(pure)) were extracted with ethylenediamine tetraacetic acid...

متن کامل

Importance of Extracellular Polymeric Substances on Fouling in Membrane Bioreactor

This paper aims to broaden a better understanding of extracellular polymeric substances (EPS) and its impact on fouling in membrane bioreactor (MBR). Some fundamental knowledge about EPS and MBR fouling was covered in this paper in several aspects including definition of EPS, evaluation of EPS, influencing factors on EPS production and responsibility of EPS on MBR fouling mechanisms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016