Matroidal Structure of Generalized Rough Sets Based on Tolerance Relations

نویسندگان

  • Hui Li
  • Yanfang Liu
  • William Zhu
چکیده

Rough set theory provides an effective tool to deal with uncertain, granular, and incomplete knowledge in information systems. Matroid theory generalizes the linear independence in vector spaces and has many applications in diverse fields, such as combinatorial optimization and rough sets. In this paper, we construct a matroidal structure of the generalized rough set based on a tolerance relation. First, a family of sets are constructed through the lower approximation of a tolerance relation and they are proved to satisfy the circuit axioms of matroids. Thus we establish a matroid with the family of sets as its circuits. Second, we study the properties of the matroid including the base and the rank function. Moreover, we investigate the relationship between the upper approximation operator based on a tolerance relation and the closure operator of the matroid induced by the tolerance relation. Finally, from a tolerance relation, we can get a matroid of the generalized rough set based on the tolerance relation. The matroid can also induce a new relation. We investigate the connection between the original tolerance relation and the induced relation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matroidal Structure of Rough Sets Based on Serial and Transitive Relations

The theory of rough sets is concerned with the lower and upper approximations of objects through a binary relation on a universe. It has been applied to machine learning, knowledge discovery, and data mining. The theory of matroids is a generalization of linear independence in vector spaces. It has been used in combinatorial optimization and algorithm design. In order to take advantages of both...

متن کامل

Topological structure on generalized approximation space related to n-arry relation

Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...

متن کامل

Matrix approach to rough sets through vector matroids over a field

Rough sets were proposed to deal with the vagueness and incompleteness of knowledge in information systems. There are many optimization issues in this field such as attribute reduction. Matroids generalized from matrices are widely used in optimization. Therefore, it is necessary to connect matroids with rough sets. In this paper, we take field into consideration and introduce matrix to study r...

متن کامل

Transversal and Function Matroidal Structures of Covering-Based Rough Sets

In many real world applications, information blocks form a covering of a universe. Covering-based rough set theory has been proposed to deal with this type of information. It is more general and complex than classical rough set theory, hence there is much need to develop sophisticated structures to characterize covering-based rough sets. Matroids are important tools for describing graphs and li...

متن کامل

Matroidal Structure of Rough Sets from the Viewpoint of Graph Theory

Constructing structures with other mathematical theories is an important research field of rough sets. As one mathematical theory on sets, matroids possess a sophisticated structure. This paper builds a bridge between rough sets and matroids and establishes the matroidal structure of rough sets. In order to understand intuitively the relationships between these two theories, we study this probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014