Linear Convergence on Positively Homogeneous Functions of a Comparison Based Step-Size Adaptive Randomized Search: the (1+1) ES with Generalized One-fifth Success Rule
نویسندگان
چکیده
In the context of unconstraint numerical optimization, this paper investigates the global linear convergence of a simple probabilistic derivative-free optimization algorithm (DFO). The algorithm samples a candidate solution from a standard multivariate normal distribution scaled by a step-size and centered in the current solution. This solution is accepted if it has a better objective function value than the current one. Crucial to the algorithm is the adaptation of the step-size that is done in order to maintain a certain probability of success. The algorithm, already proposed in the 60’s, is a generalization of the well-known Rechenberg’s (1 + 1) Evolution Strategy (ES) with one-fifth success rule which was also proposed by Devroye under the name compound random search or by Schumer and Steiglitz under the name step-size adaptive random search. In addition to be derivative-free, the algorithm is function-value-free: it exploits the objective function only through comparisons. It belongs to the class of comparison-based step-size adaptive randomized search (CB-SARS). For the convergence analysis, we follow the methodology developed in a companion paper for investigating linear convergence of CB-SARS: by exploiting invariance properties of the algorithm, we turn the study of global linear convergence on scaling-invariant functions into the study of the stability of an underlying normalized Markov chain (MC). We hence prove global linear convergence by studying the stability (irreducibility, recurrence, positivity, geometric ergodicity) of the normalized MC associated to the (1 + 1)-ES. More precisely, we prove that starting from any initial solution and any step-size, linear convergence with probability one and in expectation occurs. Our proof holds on unimodal functions that are the composite of strictly increasing functions by positively homogeneous functions with degree α (assumed also to be continuously differentiable). This function class includes composite of norm functions but also non-quasi convex functions. Because of the composition by a strictly increasing function, it includes non continuous functions. We find that a sufficient condition for global linear convergence is the step-size increase on linear functions, a condition typically satisfied for standard parameter choices. While introduced more than 40 years ago, we provide here the first proof of global linear convergence for the (1+1)-ES with generalized one-fifth success rule and the first proof of linear convergence for a CB-SARS on such a class of functions that includes non-quasi convex and non-continuous functions. Our proof also holds on functions where linear convergence of some CB-SARS was previously proven, namely convex-quadratic functions (including the well-know sphere function).
منابع مشابه
On Proving Linear Convergence of Comparison-based Step-size Adaptive Randomized Search on Scaling-Invariant Functions via Stability of Markov Chains
In the context of numerical optimization, this paper develops a methodology to analyze the linear convergence of comparison-based step-size adaptive randomized search (CB-SARS), a class of probabilistic derivative-free optimization algorithms where the function is solely used through comparisons of candidate solutions. Various algorithms are included in the class of CB-SARS algorithms. On the o...
متن کاملMy title
In this paper, we consider comparison-based adaptive stochastic algorithms for solving numerical optimisation problems. We consider a specific subclass of algorithms that we call comparison-based step-size adaptive randomized search (CB-SARS), where the state variables at a given iteration are a vector of the search space and a positive parameter, the step-size, typically controlling the overal...
متن کاملDrift Theory in Continuous Search Spaces: Expected Hitting Time of the (1+1)-ES with 1/5 Success Rule
This paper explores the use of the standard approach for proving runtime bounds in discrete domains—often referred to as drift analysis—in the context of optimization on a continuous domain. Using this framework we analyze the (1+1) Evolution Strategy with one-fifth success rule on the sphere function. To deal with potential functions that are not lower-bounded, we formulate novel drift theorem...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملGlobal Convergence of the (1+1) Evolution Strategy
We establish global convergence of the (1+1)-ES algorithm, i.e., convergence to a critical point independent of the initial state. The analysis is based on two ingredients. We establish a sufficient decrease condition for elitist, rank-based evolutionary algorithms, formulated for an essentially monotonically transformed variant of the objective function. This tool is of general value, and it i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1310.8397 شماره
صفحات -
تاریخ انتشار 2013