The mixed capacitated general routing problem with turn penalties
نویسندگان
چکیده
0957-4174/$ see front matter 2011 Elsevier Ltd. A doi:10.1016/j.eswa.2011.04.092 ⇑ Corresponding author. Tel.: +34963877007x7666 E-mail addresses: [email protected] (O. Bräy Martínez), [email protected] (Y. Nagata), dsole In this paper we deal with the mixed capacitated general routing problem with turn penalties. This problem generalizes many important arc and node routing problems, and it takes into account turn penalties and forbidden turns, which are crucial in many real-life applications, such as mail delivery, waste collection and street maintenance operations. Through a polynomial transformation of the considered problem into a Generalized Vehicle routing problem, we suggest a new approach for solving this new problem by transforming it into an Asymmetric Capacitated Vehicle routing problem. In this way, we can solve the new problem both optimally and heuristically using existing algorithms. A powerful memetic algorithm and a set of 336 new benchmark instances are also suggested. The experimental results show that the average deviation of the suggested solution method is less than 0.05% with respect to optimum. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Node, Edge, Arc Routing and Turn Penalties: Multiple Problems - One Neighborhood Extension
This article explores a structural neighborhood decomposition for arc routing problems, in which the decisions about traversal orientations during services are made optimally as part of neighbor evaluation procedures. Using memory structures, bidirectional dynamic programming, and lower bounds, we show that a large neighborhood involving classical moves on the sequences of services along with o...
متن کاملA multi-objective Two-Echelon Capacitated Vehicle Routing Problem for perishable products
This article addresses a general tri-objective two-echelon capacitated vehicle routing problem (2E-CVRP) to minimize the total travel cost, customers waiting times and carbon dioxide emissions simultaneously in distributing perishable products. In distributing perishable products, customers’ satisfaction is very important and is inversely proportional to the customers waiting times. The propose...
متن کاملAn Imperialist Competitive Algorithm and a Mixed Integer Programming Formulation for the Capacitated Vehicle Routing Problem
The Vehicle Routing Problem (VRP), a famous problem of operation research, holds a central place in combinatorial optimization problems. In this problem, a fleet vehicles with Q capacity start to move from depot and return after servicing to customers in which visit only ones each customer and load more than its capacity not at all. The objective is to minimize the number of used vehicles and t...
متن کاملCAPACITATED VEHICLE ROUTING PROBLEM WITH VEHICLES HIRE OR PURCHASE DECISION: MODELING AND SOLUTION APPROACHES
The overall cost of companies dealing with the distribution tasks is considerably affected by the way that distributing vehicles are procured. In this paper, a more practical version of capacitated vehicle routing problem (CVRP) in which the decision of purchase or hire of vehicles is simultaneously considered is investigated. In CVRP model capacitated vehicles start from a single depot simulta...
متن کاملComparing Two-Echelon and Single-Echelon Multi-Objective Capacitated Vehicle Routing Problems
This paper aims to compare a two-echelon and a single-echelon distribution system. A mathematical model for the Single-Echelon Capacitated Vehicle Routing Problem (SE-CVRP) is proposed. This SE-CVRP is the counterpart of Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP) introduced in the authors’ previous work. The proposed mathematical model is Mixed-Integer Non-Linear Programming (MIN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 38 شماره
صفحات -
تاریخ انتشار 2011