A note on Diophantine approximation
نویسندگان
چکیده
Given a set of nonnegative real numbers Λ= {λi}i=0, a Λ-polynomial (or Müntz polynomial) is a function of the form p(x)=ni=0 aizi (n∈N). We denote byΠ(Λ) the space of Λ-polynomials and byΠZ(Λ) := {p(x)=ni=0 aizi ∈Π(λ) : ai ∈ Z for all i≥ 0} the set of integral Λ-polynomials. Clearly, the sets ΠZ(Λ) are subgroups of infinite rank of Z[x] wheneverΛ⊂N, #Λ=∞ (by infinite rank, wemean that the real vector space spanned by X does not have finite dimension. In all what follows we are uniquely interested in groups of infinite rank). Now, it is well known that the problem of approximation of functions on intervals [a,b] by polynomials with integral coefficients is solvable only for intervals [a,b] of length smaller than four and functions f which are interpolable by polynomials of Z[x] on a certain set (which we call the algebraic kernel of the interval [a,b]) (a,b). Concretely, it is well known that Z[x] is a discrete subgroup of C[a,b] whenever b− a≥ 4 and 4 is the smallest number with this property (for these and other interesting results about approximation by polynomials with integral coefficients, see [1, 3] and the references therein. See also the other references at the end of this note). This motivates the following concept.
منابع مشابه
Self-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کاملA Note on Simultaneous Diophantine Approximation in Positive Characteristic
In a recent paper, Inoue and Nakada proved a 0-1 law and a strong law of large numbers with error term for the number of coprime solutions of the one-dimensional Diophantine approximation problem in the field of formal Laurent series over a finite base field. In this note, we generalize their results to higher dimensions.
متن کاملMultiplier Ideal Sheaves, Nevanlinna Theory, and Diophantine Approximation
This note states a conjecture for Nevanlinna theory or diophantine approximation, with a sheaf of ideals in place of the normal crossings divisor. This is done by using a correction term involving a multiplier ideal sheaf. This new conjecture trivially implies earlier conjectures in Nevanlinna theory or diophantine approximation, and in fact is equivalent to these conjectures. Although it does ...
متن کاملA Note on Metric Inhomogeneous Diophantine Approximation
An inhomogeneous version of a general form of the Jarn k-Besicovitch Theorem is proved. Dedicated to Professor F. Chong for his 80th birthday 1. Introduction In some respects, inhomogeneous Diophantine approximation is rather diierent from homogeneous Diophantine approximation. Results in the former, where the additional variables ooer extràdegrees of freedom', are sometimes sharper or easier t...
متن کاملQuantitative Nondivergence and Its Diophantine Applications
The main goal of these notes is to describe a proof of quantitative nondivergence estimates for quasi-polynomial trajectories on the space of lattices, and show how estimates of this kind are applied to some problems in metric Diophantine approximation.
متن کاملA higher-dimensional Kurzweil theorem for formal Laurent series over finite fields
In a recent paper, Kim and Nakada proved an analogue of Kurzweil’s theorem for inhomogeneous Diophantine approximation of formal Laurent series over finite fields. Their proof used continued fraction theory and thus cannot be easily extended to simultaneous Diophantine approximation. In this note, we give another proof which works for simultaneous Diophantine approximation as well.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2005 شماره
صفحات -
تاریخ انتشار 2005