Engineering a family of synthetic splicing ribozymes

نویسندگان

  • Austin J. Che
  • Thomas F Knight
چکیده

Controlling RNA splicing opens up possibilities for the synthetic biologist. The Tetrahymena ribozyme is a model group I self-splicing ribozyme that has been shown to be useful in synthetic circuits. To create additional splicing ribozymes that can function in synthetic circuits, we generated synthetic ribozyme variants by rationally mutating the Tetrahymena ribozyme. We present an alignment visualization for the ribozyme termed as structure information diagram that is similar to a sequence logo but with alignment data mapped on to secondary structure information. Using the alignment data and known biochemical information about the Tetrahymena ribozyme, we designed synthetic ribozymes with different primary sequences without altering the secondary structure. One synthetic ribozyme with 110 nt mutated retained 12% splicing efficiency in vivo. The results indicate that our biochemical understanding of the ribozyme is accurate enough to engineer a family of active splicing ribozymes with similar secondary structure but different primary sequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title: Engineering Synthetic Trans-splicing Ribozyme Systems

Natural intron-like self-splicing ribozymes have been re-engineered to trans-splice two arbitrary RNA pieces together. This capability has potential to be tremendously useful for the synthetic biologist. We propose analyzing the suitability of these ribozymes as a tool for engineering biology by adapting trans-splicing ribozymes for use in measuring, debugging, patching, and building biological...

متن کامل

Catalytic nucleic acids: from lab to applications.

Since the discovery of self-cleavage and ligation activity of the group I intron, the expansion of research interest in catalytic nucleic acids has provided a valuable nonprotein resource for manipulating biomolecules. Although a multitude of reactions can be enhanced by this class of catalyst, including trans-splicing activity of the group I intron (which could be applied to gene correction), ...

متن کامل

Design of highly specific cytotoxins by using trans-splicing ribozymes.

We have designed ribozymes based on a self-splicing group I intron that can trans-splice exon sequences into a chosen RNA target to create a functional chimeric mRNA and provide a highly specific trigger for gene expression. We have targeted ribozymes against the coat protein mRNA of a widespread plant pathogen, cucumber mosaic virus. The ribozymes were designed to trans-splice the coding seque...

متن کامل

Design and Experimental Evolution of trans-Splicing Group I Intron Ribozymes.

Group I intron ribozymes occur naturally as cis-splicing ribozymes, in the form of introns that do not require the spliceosome for their removal. Instead, they catalyze two consecutive trans-phosphorylation reactions to remove themselves from a primary transcript, and join the two flanking exons. Designed, trans-splicing variants of these ribozymes replace the 3'-portion of a substrate with the...

متن کامل

Trans-splicing ribozymes for targeted gene delivery.

Ribozymes are potential tools for genetic manipulation, and various naturally occurring catalytic RNAs have been dissected and used as the basis for the design of new endoribonuclease activities. While such cleaving ribozymes may work well in vitro, they have not proved to be routinely effective in depleting living cells of the chosen target RNA. Recently, trans-splicing ribozymes have been emp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2010