The C-terminal domain of FUSCA3 negatively regulates mRNA and protein levels, and mediates sensitivity to the hormones abscisic acid and gibberellic acid in Arabidopsis.

نویسندگان

  • Qing Shi Lu
  • Joelle Dela Paz
  • Aathi Pathmanathan
  • Rex Shun Chiu
  • Allen Yi-Lun Tsai
  • Sonia Gazzarrini
چکیده

The transcription factor FUSCA3 (FUS3) controls the transition from the embryonic to the vegetative phase of development by regulating abscisic acid (ABA) and gibberellic acid (GA) levels in Arabidopsis thaliana. In a feedback loop, FUS3 accumulation is negatively and positively regulated by GA and ABA, respectively, by an uncharacterized mechanism. Here, we use a FUS3-GFP construct to show that the level of the FUS3 protein decreases dramatically during mid to late embryogenesis, whereas its mRNA is present at a high level. Deletion studies identify a C-terminal domain (CTD) that negatively regulates mRNA and protein levels, and mediates sensitivity to ABA and GA. Indeed, a CTD-truncated FUS3 variant accumulates at high level, and is insensitive to the destabilizing and stabilizing effects of GA and ABA, respectively. In contrast, fusion of various fragments of the CTD with GFP is sufficient to greatly reduce GFP fluorescence. The GFP-CTD fluorescence can be increased by ABA and paclobutrazol, an inhibitor of GA biosynthesis. Cell-free degradation assays show that FUS3 is a short-lived protein. FUS3 degradation follows the 26S proteasome in vitro and in vivo, and the CTD affects its degradation rate. In contrast to the native form, the CTD-truncated FUS3 is unable to fully rescue the fus3-3 mutant, and is thus required for FUS3 function. In conclusion, this study identifies a CTD that maintains low levels of FUS3 during embryogenesis and early germination, and is required for normal FUS3 function and sensitivity to ABA and GA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Regulation by the AGL15 Transcription Factor Reveals Hormone Interactions in Somatic Embryogenesis.

The MADS box transcription factor Arabidopsis (Arabidopsis thaliana) AGAMOUS-LIKE15 (AGL15) and a putative ortholog from soybean (Glycine max), GmAGL15, are able to promote somatic embryogenesis (SE) in these plants when ectopically expressed. SE is an important means of plant regeneration, but many plants, or even particular cultivars, are recalcitrant for this process. Understanding how (Gm)A...

متن کامل

A novel gene family in Arabidopsis encoding putative heptahelical transmembrane proteins homologous to human adiponectin receptors and progestin receptors.

A novel seven-transmembrane receptor family, that is comprised of human adiponectin receptors (AdipoRs) and membrane progestin receptors (mPRs) that share little sequence homology with all known G protein-coupled receptors (GPCRs), has been identified recently. Although a fish mPR has been suggested to be a GPCR, human AdipoRs seem to be structurally and functionally distinct from all known GPC...

متن کامل

Aleurain: a barley thiol protease closely related to mammalian cathepsin H.

We have isolated and sequenced a 1400-base-pair cDNA derived from gibberellic acid-treated aleurone cell mRNA. This sequence contains an open reading frame that would code for a protein of 361 amino acids. The carboxyl-terminal two-thirds of the predicted amino acid sequence is closely related to that of the rat lysosomal thiol protease cathepsin H; the initial 143 amino acids may code for a se...

متن کامل

Transcriptional Response of Structural and Regulatory Genes Involved in Isoprene Biosynthesis and its Relation to Essential Oil Biosynthesis in Response to Salicylic Acid and Abscisic Acid in Mentha piperita L.

Background: In peppermint, precursors for the biosynthesis of monoterpenes are provided by plastidial methyl-erythritol-phosphate (MEP) pathways. Objective: In order to increase our understanding of terpene metabolism in M. piperita, the effect of salicylic acid (SA) and abscisic acid (ABA) in the modulation of expression pattern of genes involved in essential oil biosynthesis and secretion wa...

متن کامل

A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin.

Both physiological and genetic evidence indicate interconnections among plant responses to different hormones. We describe a pleiotropic recessive Arabidopsis transposon insertion mutation, designated hyponastic leaves (hyl1), that alters the plant's responses to several hormones. The mutant is characterized by shorter stature, delayed flowering, leaf hyponasty, reduced fertility, decreased rat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 64 1  شماره 

صفحات  -

تاریخ انتشار 2010