A model of higher accuracy for the individual haplotyping problem based on weighted SNP fragments and genotype with errors

نویسندگان

  • Minzhu Xie
  • Jianxin Wang
  • Jianer Chen
چکیده

MOTIVATION In genetic studies of complex diseases, haplotypes provide more information than genotypes. However, haplotyping is much more difficult than genotyping using biological techniques. Therefore effective computational techniques have been in demand. The individual haplotyping problem is the computational problem of inducing a pair of haplotypes from an individual's aligned SNP fragments. Based on various optimal criteria and including different extra information, many models for the problem have been proposed. Higher accuracy of the models has been an important issue in the study of haplotype reconstruction. RESULTS The current article proposes a highly accurate model for the single individual haplotyping problem based on weighted fragments and genotypes with errors. The model is proved to be NP-hard even with gapless fragments. Based on the characteristics of Single Nucleotide Polymorphism (SNP) fragments, a parameterized algorithm of time complexity O(nk(2)2(k(2)) + m log m + mk(1)) is developed, where m is the number of fragments, n is the number of SNP sites, k(1) is the maximum number of SNP sites that a fragment covers (no more than n and usually smaller than 10) and k(2) is the maximum number of the fragments covering a SNP site (usually no more than 19). Extensive experiments show that this model is more accurate in haplotype reconstruction than other models. AVAILABILITY The program of the parameterized algorithm can be obtained by sending an email to the corresponding author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum Conflict Individual Haplotyping from SNP Fragments and Related Genotype

The Minimum Error Correction (MEC) is an important model for haplotype reconstruction from SNP fragments. However, this model is effective only when the error rate of SNP fragments is low. In this paper, we propose a new computational model called Minimum Conflict Individual Haplotyping (MCIH) as an extension to MEC. In contrast to the conventional approaches, the new model employs SNP fragment...

متن کامل

O-36: Genome Haplotyping and Detection of Meiotic Homologous Recombination Sites in Single Cells, A Generic Method for Preimplantation Genetic Diagnosis

Background: Haplotyping is invaluable not only to identify genetic variants underlying a disease or trait, but also to study evolution and population history as well as meiotic and mitotic recombination processes. Current genome-wide haplotyping methods rely on genomic DNA that is extracted from a large number of cells. Thus far random allele drop out and preferential amplification artifacts of...

متن کامل

Practical Algorithms and Fixed-Parameter Tractability for the Single Individual SNP Haplotyping Problem

Single nucleotide polymorphisms (SNPs) are the most frequent form of human genetic variation, of foremost importance for a variety of applications including medical diagnostic, phylogenies and drug design. The complete SNPs sequence information from each of the two copies of a given chromosome in a diploid genome is called a haplotype. The Haplotyping Problem for a single individual is as follo...

متن کامل

Haplotype assembly from aligned weighted SNP fragments

Given an assembled genome of a diploid organism the haplotype assembly problem can be formulated as retrieval of a pair of haplotypes from a set of aligned weighted SNP fragments. Known computational formulations (models) of this problem are minimum letter flips (MLF) and the weighted minimum letter flips (WMLF; Greenberg et al. (INFORMS J. Comput. 2004, 14, 211-213)). In this paper we show tha...

متن کامل

HMEC: A Heuristic Algorithm for Individual Haplotyping with Minimum Error Correction

Haplotype is a pattern of single nucleotide polymorphisms (SNPs) on a single chromosome. Constructing a pair of haplotypes from aligned and overlapping but intermixed and erroneous fragments of the chromosomal sequences is a nontrivial problem. Minimum error correction approach aims to minimize the number of errors to be corrected so that the pair of haplotypes can be constructed through consen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2008