Real-time Ranking of Electrical Feeders using Expert Advice⋆
نویسندگان
چکیده
We are using machine learning to construct a failure-susceptibility ranking of feeders that supply electricity to the boroughs of New York City. The electricity system is inherently dynamic and driven by environmental conditions and other unpredictable factors, and thus the ability to cope with concept drift in real time is central to our solution. Our approach builds on the ensemble-based notion of learning from expert advice as formulated in the continuous version of the Weighted Majority algorithm [16]. Our method is able to adapt to a changing environment by periodically building and adding new machine learning models (or “experts”) based on the latest data, and letting the online learning framework choose what experts to use as predictors based on recent performance. Our system is currently deployed and being tested by New York City’s electricity distribution company.
منابع مشابه
Susceptibility Ranking of Electrical Feeders: A Case Study
Ranking problems arise in a wide range of real world applications where an ordering on a set of examples is preferred to a classification model. These applications include collaborative filtering, information retrieval and ranking components of a system by susceptibility to failure. In this paper, we present an ongoing project to rank the feeder cables of a major metropolitan area’s electrical ...
متن کاملSubstation Expansion Planning Based on BFOA
In recent years, significant research efforts have been devoted to the optimal planning of power systems. Substation Expansion Planning (SEP) as a sub-system of power system planning consists of finding the most economical solution with the optimal location and size of future substations and/or feeders to meet the future demand. The large number of design variables, and combination of discrete ...
متن کاملRepresenting a method to identify and contrast with the fraud which is created by robots for developing websites’ traffic ranking
With the expansion of the Internet and the Web, communication and information gathering between individual has distracted from its traditional form and into web sites. The World Wide Web also offers a great opportunity for businesses to improve their relationship with the client and expand their marketplace in online world. Businesses use a criterion called traffic ranking to determine their si...
متن کاملPresenting a three-objective model in location-allocation problems using combinational interval full-ranking and maximal covering with backup model
Covering models have found many applications in a wide variety of real-world problems; nevertheless, some assumptions of covering models are not realistic enough. Accordingly, a general approach would not be able to answer the needs of encountering varied aspects of real-world considerations. Assumptions like the unavailability of servers, uncertainty, and evaluating more factors at the same ti...
متن کاملFast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies
Collecting insurance fraud samples is costly and if performed manually is very time consuming. This issue suggests usage of unsupervised models. One of the accurate methods in this regards is Spectral Ranking of Anomalies (SRA) that is shown to work better than other methods for auto insurance fraud detection specifically. However, this approach is not scalable to large samples and is not appro...
متن کامل