Lipopolysaccharide-Deficient Mutants of Salmonella enterica Have Increased Sensitivity to Catechins

نویسندگان

  • Miho Yoshii
  • Akira Okamoto
  • Michio Ohta
چکیده

Antimicrobial activity is one of the well-known biological characteristics of catechins, the main extract of green tea leaves. It is thought that catechins intercalate into the bacterial cell membrane and damage the lipid bilayer. However, the association between catechins and lipopolysaccharides, which consist of an O side chain, core oligosaccharide, and lipid A, has not been previously investigated. In this study, we evaluated the catechin sensitivity of Salmonella enterica mutants that lack the O side chain and have core oligosaccharides of different lengths. These rough mutants were more sensitive to catechins than a bacterial strain with intact lipopolysaccharide. We conclude that the O side chain and core oligosaccharide play an important role in protecting Gram-negative bacteria against the antimicrobial activity of catechins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of sapA and yfgA in Susceptibility to Antibody-Mediated Complement-Dependent Killing and Virulence of Salmonella enterica Serovar Typhimurium

The ST313 pathovar of Salmonella enterica serovar Typhimurium contributes to a high burden of invasive disease among African infants and HIV-infected adults. It is characterized by genome degradation (loss of coding capacity) and has increased resistance to antibody-dependent complement-mediated killing compared with enterocolitis-causing strains of S Typhimurium. Vaccination is an attractive d...

متن کامل

Attenuation of Salmonella enterica Serovar Typhimurium by altering biological functions of murein lipoprotein and lipopolysaccharide.

We constructed Salmonella enterica serovar Typhimurium double-knockout mutants in which either the lipoprotein A (lppA) or the lipoprotein B (lppB) gene was deleted from an msbB-negative background strain by marker exchange mutagenesis. These mutants were highly attenuated when tested with in vitro and in vivo models of Salmonella pathogenesis.

متن کامل

The GATC-binding protein SeqA is required for bile resistance and virulence in Salmonella enterica serovar typhimurium.

Disruption of the seqA gene of Salmonella enterica serovar Typhimurium causes defects similar to those described in E. coli: filament formation, aberrant nucleoid segregation, induction of the SOS response, envelope instability, and increased sensitivity to membrane-damaging agents. Differences between SeqA(-) mutants of E. coli and S. enterica, however, are found. SeqA(-) mutants of S. enteric...

متن کامل

O-Antigen Delays Lipopolysaccharide Recognition and Impairs Antibacterial Host Defense in Murine Intestinal Epithelial Cells

Although Toll-like receptor (TLR) 4 signals from the cell surface of myeloid cells, it is restricted to an intracellular compartment and requires ligand internalization in intestinal epithelial cells (IECs). Yet, the functional consequence of cell-type specific receptor localization and uptake-dependent lipopolysaccharide (LPS) recognition is unknown. Here, we demonstrate a strikingly delayed a...

متن کامل

Roles of the outer membrane protein AsmA of Salmonella enterica in the control of marRAB expression and invasion of epithelial cells.

A genetic screen for suppressors of bile sensitivity in DNA adenine methylase (dam) mutants of Salmonella enterica serovar Typhimurium yielded insertions in an uncharacterized locus homologous to the Escherichia coli asmA gene. Disruption of asmA suppressed bile sensitivity also in phoP and wec mutants of S. enterica and increased the MIC of sodium deoxycholate for the parental strain ATCC 1402...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013