On linear evolution equations with cylindrical Lévy noise
نویسنده
چکیده
in a real separable Hilbert space H driven by an infinite dimensional cylindrical symmetric Lévy process Z = (Zt). The process Z may take values in a Hilbert space 1 Supported by the M.I.U.R. research projects Prin 2004 and 2006 “Kolmogorov equations” and by the Polish Ministry of Science and Education project 1PO 3A 034 29 “Stochastic evolution equations with Lévy noise”. 2 Supported by the Polish Ministry of Science and Education project 1PO 3A 034 29 “Stochastic evolution equations with Lévy noise”.
منابع مشابه
Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملStochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کاملSingular Perturbation Approximation for Linear Systems with Lévy Noise
To solve a stochastic linear evolution equation numerically, nite dimensional approximations are commonly used. For a good approximation, one might end up with a sequence of ordinary stochastic linear equations of high order. To reduce the high dimension for practical computations, we consider the singular perturbation approximation as a model order reduction technique in this paper. This appro...
متن کاملDifferential Equations Driven by Lévy White Noise in Spaces of Hilbert-space-valued Stochastic Distributions
We develop a white noise framework and the theory of stochastic distribution spaces for Hilbert-space-valued Lévy processes. We then apply these concepts to the study of generalized solutions of stochastic evolution equations in these spaces driven by Lévy white noise.
متن کاملInfinite dimensional Ornstein-Uhlenbeck processes driven by Lévy processes
We review the probabilistic properties of Ornstein-Uhlenbeck processes in Hilbert spaces driven by Lévy processes. The emphasis is on the different contexts in which these processes arise, such as stochastic partial differential equations, continuous-state branching processes, generalised Mehler semigroups and operator self-decomposable distributions. We also examine generalisations to the case...
متن کامل