Covariate-based stochastic parameterization of baroclinic ocean eddies

نویسنده

  • Daan Crommelin
چکیده

Abstract: In this study we investigate a covariate-based stochastic approach to parameterize unresolved turbulent processes within a standard model of the idealised, wind-driven ocean circulation. We focus on vertical instead of horizontal coarse-graining, such that we avoid the subtle difficulties of horizontal coarsegraining. The corresponding eddy forcing is uniquely defined and has a clear physical interpretation related to baroclinic instability. We propose to emulate the baroclinic eddy forcing by sampling from the conditional probability distribution functions of the eddy forcing obtained from the baroclinic reference model data. These conditional probability distribution functions are approximated here by sampling uniformly from discrete reference values. We analyze in detail the different performances of the stochastic parameterization dependent on whether the eddy forcing is conditioned on a suitable flow-dependent covariate or on a time-lagged covariate or on both. The results demonstrate that our non-Gaussian, non-linear methodology is able to accurately reproduce the first four statistical moments and spatial/temporal correlations of the stream function, energetics, and enstrophy of the reference baroclinic model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameterization of Mixed Layer Eddies. II: Prognosis and Impact

Fox-Kemper et al. (2007a) propose a parameterization for restratification by mixed layer eddies that develop from baroclinic instabilities of ocean fronts. The parameterization is cast an overturning streamfunction that is proportional to the product of horizontal buoyancy gradient, mixed layer depth, and inertial period. The parameterization has remarkable skill for an extremely wide range of ...

متن کامل

Parameterization of Mixed Layer Eddies. Part II: Prognosis and Impact

The authors propose a parameterization for restratification by mixed layer eddies that develop from baroclinic instabilities of ocean fronts. The parameterization is cast as an overturning streamfunction that is proportional to the product of horizontal buoyancy gradient, mixed layer depth, and inertial period. The parameterization has remarkable skill for an extremely wide range of mixed layer...

متن کامل

Parameterization of Mixed Layer Eddies. I: Theory and Diagnosis

Ageostrophic baroclinic instabilities develop within the surface mixed layer of the ocean at horizontal fronts and efficiently restratify the upper ocean. In this paper a parameterization for the restratification driven by finiteamplitude baroclinic instabilities of the mixed layer is proposed in terms of an overturning streamfunction that tilts isopycnals from the vertical to the horizontal. T...

متن کامل

Parameterization of Mixed Layer Eddies. Part I: Theory and Diagnosis

Ageostrophic baroclinic instabilities develop within the surface mixed layer of the ocean at horizontal fronts and efficiently restratify the upper ocean. In this paper a parameterization for the restratification driven by finite-amplitude baroclinic instabilities of the mixed layer is proposed in terms of an overturning streamfunction that tilts isopycnals from the vertical to the horizontal. ...

متن کامل

The Influence of Mesoscale Eddies on Coarsely Resolved Density: An Examination of Subgrid-Scale Parameterization

Coarse-resolution numerical models of ocean circulation rely on parameterizations of unresolved mesoscale eddy effects. In order to investigate the role of eddy-flux divergences in the density equation, the GFDL Modular Ocean Model (MOM) has been configured as a simple flat-bottomed channel model with sufficient resolution to represent mesoscale eddies. Eady-type baroclinic instability and a wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017