Pii: 0045-7949(90)90405-q

نویسنده

  • F. J. MELLO
چکیده

Weak formulations in Analytical Dynamics are developed, paralleling the variational methods in elastostatics, and including a fundamental yet novel approach for treating constraints (both holonomic and nonholonomic). A general three-field approach is presented, in which the momentum balance conditions, the compatibility conditions between displacement and velocity, the constitutive relations and the displacement and momentum boundary conditions are all enforced in weak form. A primal, or kinematic formulation is developed from the general form by enforcing the compatibility conditions and displacement boundary conditions a priori. The conditional stability of the kinematic formulation is the counterpart of the locking phenomenon in elastostatics and may be avoided, either by reduced order integration, or by utilizing a mixed formulation. Toward this end, a two-field mixed formulation is presented, which follows from the general form, when the constitutive relations are satisfied a priori. A general set of the constraint equations is introduced into the kinematic and mixed formulations, using a specific choice of multipliers, which results in modified variational principles. Several simple examples concerning rigid body-dynamics are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: 0045-7949(89)90035-7

Based on the adaptive Dynamic Relaxation (aDR) method, a modified adaptive Dynamic Relaxation (maDR) method is proposed which is more efficient than the former in solving non-linear problems. It is then applied to analysing the elastic-plastic bending of circular plates in large deflection and their following wrinkling, and leads to satisfactory results compared with corresponding experimental ...

متن کامل

Pii: 0045-7949(94)90249-6

This paper addresses the development of the modified adaptive dynamic relaxation (maDR) method. Through a critical review of the merits and disadvantages of previous studies, the primary physical approaches for improving the efficiency of the method are discussed. Emphases are placed on the selection of initial vectors and the calculation of fictitious damping factors. A variety of engineering ...

متن کامل

An improved SPH method for modeling liquid sloshing dynamics

0045-7949/$ see front matter 2012 Elsevier Ltd. A doi:10.1016/j.compstruc.2012.02.005 ⇑ Corresponding author. Tel.: +86 10 82544024. E-mail addresses: [email protected] (J.R. Shao [email protected] (G.R. Liu), [email protected] Smoothed particle hydrodynamics (SPH) is a popular meshfree, Lagrangian particle method with attractive features in modeling liquid sloshing dynamics, which is ...

متن کامل

Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems

0045-7949/$ see front matter 2012 Elsevier Ltd. A http://dx.doi.org/10.1016/j.compstruc.2012.07.010 ⇑ Corresponding author. Tel.: +60 379675266; fax: E-mail addresses: [email protected] (H. hoo.com (A. Sadollah), [email protected] (A m.edu.my (M. Hamdi). This paper presents a new optimization technique called water cycle algorithm (WCA) which is applied to a number of constrained op...

متن کامل

Shape optimization for drag reduction in linked bodies using evolution strategies

0045-7949/$ see front matter 2010 Elsevier Ltd. A doi:10.1016/j.compstruc.2010.09.001 ⇑ Corresponding author. E-mail addresses: [email protected] (M Colorado.edu (O.V. Vasilyev), [email protected] (P. Koum We present results from the shape optimization of linked bodies for drag reduction in simulations of incompressible flow at moderate Reynolds numbers. The optimization relies on the cov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002