Faults Diagnosis of a Girth Gear using Discrete Wavelet Transform and Artificial Neural Networks
نویسندگان
چکیده
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) was designed to diagnose different types of faults in gears. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet coefficients of normalized vibration signals have been selected. These features are considered as the feature vector for training purpose of the ANN. A wavelet selection criteria, namely Maximum Energy to Shannon Entropy ratio, was used to select an appropriate mother wavelet and discrete level, for feature extraction. To ameliorate the algorithm, various ANNs were exploited to optimize the algorithm so as to determine the best values for “number of neurons in hidden layer” resulted in a high-speed, meticulous three-layer ANN with a small-sized structure. The diagnosis success rate of this ANN was 100% for experimental data set. An experimental set of data has been used to verify the effectiveness and accuracy of the proposed method. To develop this method in general fault diagnosis application, an example was investigated in cement industry. At first, a MLP network with well-formed and optimized structure (20:12:3) and remarkable accuracy was presented providing the capability to identify different faults of gears. Then this neural network with optimized structure was presented to diagnose different faults of gears. The performance of the neural networks in learning, classifying and general fault diagnosis were found encouraging and can be concluded that neural networks have high potentiality in condition monitoring of the gears with various faults.
منابع مشابه
AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملUsing PCA with LVQ, RBF, MLP, SOM and Continuous Wavelet Transform for Fault Diagnosis of Gearboxes
A new method based on principal component analysis (PCA) and artificial neural networks (ANN) is proposed for fault diagnosis of gearboxes. Firstly the six different base wavelets are considered, in which three are from real valued and other three from complex valued. Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کاملFault Diagnosis of Industrial Robot Bearings Based on Discrete Wavelet Transform and Artificial Neural Network
Industrial robots have long been used in production systems in order to improve productivity, quality and safety in automated manufacturing processes. An unforeseen robot stoppage due to different reasons has the potential to cause an interruption in the entire production line, resulting in economic and production losses. The majority of the previous research on industrial robots health monitor...
متن کامل