Pseudospectra of Matrix Pencils for Transient Analysis of Differential-Algebraic Equations
نویسندگان
چکیده
To understand the solution of a linear, time-invariant differential-algebraic equation (DAE), one must analyze a matrix pencil (A,E) with singular E. Even when this pencil is stable (all its finite eigenvalues fall in the left half-plane), the solution can exhibit transient growth before its inevitable decay. When the equation results from the linearization of a nonlinear system, this transient growth gives a mechanism that can promote nonlinear instability. One can enrich the conventional large-scale eigenvalue calculation used for linear stability analysis to identify the potential for such transient growth. Toward this end, we introduce a new definition of the pseudospectrum of a matrix pencil, use it to bound transient growth, explain how to incorporate a physically relevant norm, and derive approximate pseudospectra using the invariant subspace computed in conventional linear stability analysis. We apply these tools to several canonical test problems in fluid mechanics, an important source of DAEs.
منابع مشابه
Pseudospectra for Matrix Pencils and Stability of Equilibria
The concept of "{pseudospectra for matrices, introduced by Trefethen and his co-workers, has been studied extensively since 1990. In this paper, "{ pseudospectra for matrix pencils, which are relevant in connection with generalized eigenvalue problems, are considered. Some properties as well as the practical computation of "{pseudospectra for matrix pencils will be discussed. As an application,...
متن کاملApplication of Laguerre Polynomials for Solving Infinite Boundary Integro-Differential Equations
In this study, an efficient method is presented for solving infinite boundary integro-differential equations (IBI-DE) of the second kind with degenerate kernel in terms of Laguerre polynomials. Properties of these polynomials and operational matrix of integration are first presented. These properties are then used to transform the integral equation to a matrix equation which corresponds t...
متن کاملOn generalized inverses of singular matrix pencils
Linear time-invariant networks are modelled by linear differential-algebraic equations with constant coefficients. These equations can be represented by a matrix pencil. Many publications on this subject are restricted to regular matrix pencils. In particular, the influence of the Weierstrass structure of a regular pencil on the poles of its inverse is well known. In this paper we investigate s...
متن کاملNonlinear Bending Analysis of Sector Graphene Sheet Embedded in Elastic Matrix Based on Nonlocal Continuum Mechanics
The nonlinear bending behavior of sector graphene sheets is studied subjected to uniform transverse loads resting on a Winkler-Pasternak elastic foundation using the nonlocal elasticity theory. Considering the nonlocal differential constitutive relations of Eringen theory based on first order shear deformation theory and using the von-Karman strain field, the equilibrium partial differential eq...
متن کاملUsing operational matrix for numerical solution of fractional differential equations
In this article, we have discussed a new application of modification of hat functions on nonlinear multi-order fractional differential equations. The operational matrix of fractional integration is derived and used to transform the main equation to a system of algebraic equations. The method provides the solution in the form of a rapidly convergent series. Furthermore, error analysis of the pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 38 شماره
صفحات -
تاریخ انتشار 2017