Sucrose Metabolism in Tubers of Potato (Solanum tuberosum L.): Effects of Sink Removal and Sucrose Flux on Sucrose-Degrading Enzymes.
نویسندگان
چکیده
Excision of developing potato (Solanum tuberosum L.) tubers from the mother plant, followed by storage at 10 degrees C, resulted in a rapid, substantial decrease in sucrose synthase activity and considerable increases in hexose content and acid invertase activity. A comparison of the response of three genotypes, known to accumulate different quantities of hexoses in storage, showed that both sucrose synthase activity and the extent to which activity declined following excision were similar in all cases. However, there was significant genotypic variation in the extent to which acid invertase activity developed, with tubers accumulating the highest hexose content also developing the highest extractable activity of invertase. Similar effects were found in nondetached tubers when growing plants were maintained in total darkness for a prolonged period. Furthermore, supplying sucrose to detached tubers through the cut stolon surface prevented the decline in sucrose synthase activity. Maltose proved to be ineffective. Western blots using antibodies raised against maize sucrose synthase showed that the decline in sucrose synthase activity was associated with the loss of protein rather than the effect of endogenous inhibitors. Although there were indications that maintaining a flux of sucrose into isolated tubers could prevent the increase in acid invertase activity, the results were not conclusive.
منابع مشابه
De novo amino acid biosynthesis in potato tubers is regulated by sucrose levels.
Plant growth and development are strongly dependent on sink-source interactions. In the majority of plants, sucrose (Suc) is the dominant form in which photo-assimilate is transported from source to sinks. Although the effects of Suc on photosynthetic metabolism have been intensively studied, the effect of Suc supply on metabolism in sink organs has received relatively little attention. For thi...
متن کاملStarch metabolism in tubers of transgenic potato (Solanum tuberosum) with increased ADPglucose pyrophosphorylase.
The aim of this work was to use tubers from transgenic lines of potato (Solanum tuberosum) containing increased amounts of ADPglucose pyrophosphorylase to study the role of this enzyme in the control of starch synthesis. A 4-5-fold increase in activity of the enzyme, achieved by transformation with the Escherichia coli ADPglucose pyrophosphorylase gene glgC-16, had no detectable effect on the s...
متن کاملEffect of High Temperature on Plant Growth and Carbohydrate Metabolism in Potato.
This study was undertaken to determine the role of sucrose-metabolizing enzymes in altered carbohydrate partitioning caused by heat stress. Potato (Solanum tuberosum L.) genotypes characterized as susceptible and tolerant to heat stress were grown at 19/17[deg]C, and a subset was transferred to 31/29[deg]C. Data were obtained for plant growth and photosynthesis. Enzyme activity was determined f...
متن کاملEnhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield.
Sucrose synthase (SuSy) is a highly regulated cytosolic enzyme that catalyzes the conversion of sucrose and a nucleoside diphosphate into the corresponding nucleoside diphosphate glucose and fructose. To determine the impact of SuSy activity in starch metabolism and yield in potato (Solanum tuberosum L.) tubers we measured sugar levels and enzyme activities in tubers of SuSy-overexpressing pota...
متن کاملA Medicago truncatula H+-pyrophosphatase gene, MtVP1, improves sucrose accumulation and anthocyanin biosynthesis in potato (Solanum tuberosum L.).
We recently cloned MtVP1, a type I vacuolar-type H(+)-translocating inorganic pyrophosphatase from Medicago truncatula. In the present study, we investigated the cellular location and the function of this H(+)-PPase in Arabidopsis and potato (Solanum tuberosum L.). An MtVP1::enhanced green fluorescent protein fusion was constructed, which localized to the plasma membrane of onion epidermal cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 98 1 شماره
صفحات -
تاریخ انتشار 1992